Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь есть возможность читать онлайн «Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ВЕЙЛЬ: Возможно, поэтому «Галлимар» не принял рукопись.

ЛЕВИ-СТРОСС: В действительности издательство отвергло не рукопись, а проект, который я отправил еще до начала работы над книгой. Издателям показалось, что мои мысли были недостаточно зрелыми. Мне кажется, они сразу же пожалели об этом, когда вскоре после публикации «Печальных тропиков» в издательстве «Плон» Гонкуровская академия опубликовала заявление, где с сожалением отмечалось: будь «Печальные тропики» романом, они были бы достойны премии!

Как бы то ни было, я позволил себе такие вольности, которые даже не могли прийти мне в голову во время исследования. Именно поэтому в книге изложена правда особого рода. Одна из этих вольностей как раз и заключалась в том, что я, совершенно

32

не чувствуя за собой вины, признался, что ненавижу путешествия и исследователей.

В послевоенной культурной среде присутствовала общая тенденция —допускаю, что с годами она никуда не исчезла, — больше ценить экзотические наблюдения этнологов, а не сделанные ими выводы. Для меня же самой неприятной частью работы было провести несколько недель в пути, полном опасностей, чтобы открыть новый миф или слегка изменить известные правила заключения брака.

Тропики были для меня печальными не только потому, что я видел, как их опустошил белый человек, но и потому, что я не смог до конца понять культуру индейцев, даже прожив среди них какое-то время. Можно было не спать от зари до зари, пытаться оставаться незамеченным, демонстрировать почти унизительное равнодушие и одновременно делать записи, но все это оказывалось напрасным, если индейцы объявляли мне безмолвную войну, как в Кампус-Новус. Мне доставляет облегчение думать, что лучший антрополог всех времен, Бронислав Малиновский, обладавший сверхъестественным чутьем, записал похожие мысли в своих дневниках, которые были опубликованы после его смерти. Об этом я узнал лишь много лет спустя. Работая «на земле», я утешал себя тем, что собираю сведения, ранее неизвестные человеку, которые без меня навсегда канули бы в Лету. Ценность этих сведений для истории была неоценима, но стоило ли это затраченных усилий?

ВЕЙЛЬ: Быть может, это и есть признак искусства? Флобер переписывал «Воспитание чувств» двадцать три раза. Эта книга была одним из первых его юношеских произведений, а последний вариант он завершил незадолго до смерти. Флобер стремился создать идеальный текст, в котором себя узнали бы все. Я убежден, что отличия между разными вариантами этой книги практически незаметны.

Когда я говорю об искусстве, то, разумеется, имею в виду и математику. Сколько часов можно потратить на доказательство леммы, которая станет лишь первым шагом на неизведанном пути, возможно, ведущим в никуда? Тем не менее единственный момент счастливого озарения наделяет смыслом все затраченные усилия. Не могу не процитировать Карла Фридриха Гаусса, «короля математиков», который в письме к итальянцу Гульельмо Либри писал «procreare jucumdum sed parturire molestum», то есть «зачатие сладостно, но роды мучительны».

ЛЕВИ-СТРОСС: Для меня воплощением научного поиска со всеми его трудностями и радостями по-прежнему остается поход на плато в Лангедоке в молодые годы, когда я со всех ног бежал вдоль линии, разделявшей два слоя в геологической формации. Если бы за мной со стороны наблюдал какой-нибудь альпинист, он счел бы мои перемещения абсолютно беспорядочными. Пейзаж, если уметь читать его, может раскрыть перед вами столько же секретов, как и лучшие из книг.

33

ОбложкаПечальных тропиков ВЕЙЛЬ Я иногда представляю себе творчество как - фото 6

Обложка«Печальных тропиков».

ВЕЙЛЬ: Я иногда представляю себе творчество как длинный бег «сквозь ветер и ночь», «durch Nacht und Wind», который по мере приближения к цели становится все быстрее, подобно музыке Шуберта на поэму Гете «Лесной царь». Но не следует забывать, что иногда, как и в поэме, лишь ребенок может увидеть лесного царя, а конь замедляет свой бег и почти останавливается, не выбравшись из лесной чащи.

ЛЕВИ-СТРОСС: Вы хотите сказать, что задачи порой не поддаются даже такому гению, как вы?

ВЕЙЛЬ: Позвольте рассказать вам одну историю. В моей докторской диссертации я развил идею Анри Пуанкаре, который обобщил результат, полученный Луисом Морделлом.

34

Я рассмотрел рациональные решения уравнений вида

у 2= х 3+ ах + b.

Такие уравнения описывают кривые, которые математики называют эллиптическими. Взяв за основу два решения, Пуанкаре нашел метод, позволяющий получить третье решение. Мы поговорим об этом подробнее в другой раз; я не хочу, чтобы мы погрязли в деталях. Важно другое: Морделл доказал, что метод Пуанкаре позволяет найти все решения, которых, как правило, бесконечно много, на основе конечного числа тщательно выбранных решений. Я обобщил этот результат для кривых, задаваемых многочленами произвольных степеней. Это было непросто, поскольку в те годы еще не было известно ни единого метода современной алгебраической геометрии. Я поспешил рассказать о своем открытии Адамару и, довольный собой, самонадеянно заявил, что мои методы также позволят доказать гипотезу, предложенную Морделлом в его статье.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Представляем Вашему вниманию похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Обсуждение, отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x