Вот, что написано в статье Йоргенсена с соавторами. "Эксперименты с трансгенными растениями показывают, что регуляция генной экспрессии взаимосвязана со всеми частями растения [58] 58 . Jorgensen R. A. et al.
[59] 59 . Kooter J. M. et al.
: перепроизводство трансгенного продукта (белка, который синтезируется исходя из информации, полученной с ДНК, которая пересажена из другого организма) в одной части растения часто влечет инактивацию гена (например, метиляцией регуляторных последовательностей гена) во всех тканях трансгенного растения". А теперь переведу с русского профессионального на русский обывательский. Здесь доказано, что если в какой-то клетке растения обнаруживается избыток какого-либо белка, то информация об этом быстро становится доступной для других клеток (они ведь образуют синцитий, будучи связаны межклеточными мостиками, по которым информация и передается) и они снижают синтез данного белка. Это было установлено с использованием метода пересадки генов от одного растения к другому. Предвосхищая нынешние открытия клеточных биологов, Лысенко считал, что из подвоя в привой переходят не хромосомы, а как он называл, ассимиляты.
Убежденный в действительном существовании вегетативных гибридов, Лысенко писал: “Каждый знает, что между привоем и подвоем происходит обмен только пластических веществ, обмен соков. Подвой и привой не могли обмениваться ни хромосомами ядер клеток, ни протоплазмой, и все же наследственные свойства могут передаваться из подвоя в привой и обратно. Следовательно, пластические вещества, вырабатываемые привоем и подвоем, так же обладают свойством породы, то есть наследственности” [60] 60 Лысенко Т. Д. 1952. С. 455-456.
.
Итак, механизм передачи наследственных свойств подвою лежит в рамках современной генетической догмы. Белки и РНК могут легко проходить через флоэму (канальцы, связывающие клетки синтиция растений друг с другом) и поэтому также переходить от подвоя к привою. Таким образом, наследственная информация переносится от РНК подвоя к ДНК привоя или наоборот от РНК привоя к ДНК подвоя. Транспортируемые молекулы, синтезируемые в других частях организма, воздействуют на онтогенез и физиологию (и тем самым на фенотип) конкретной ткани, а не всего растения. Поэтому при нормальных условиях различия между частями растения очень трудно наблюдать.
Эта информация потом может быть захвачена и вновь формирующимися половыми клетками и она, конечно, будет расщеплена при половом размножении и надо добиваться получения гомозиготных растений. Недавние эксперименты с трансгенными (которым пересажены чужие ДНК) растениями показывают, что регуляция генной экспрессии взаимосвязана со всеми частями растения [61] 61 . Jorgensen R. A. et al.
[62] 62 . Kooter J. M. et al.
: перепроизводство трансгенного продукта в одной части растения часто влечет инактивацию гена (например, метиляцией регуляторных последовательностей гена) во всех тканях трансгенного растения.
Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически или даже генетически идентичными. Геномы их клеток могут разойтись в результате соматических мутаций, соматических рекомбинаций (результаты относительно общего митотического кроссинговера) или в результате наследственных (но часто обратимых) изменений (в основном — метиляций) генома [63] 63 . Otto S. P., Hastings I. M. 1998.
. С точки зрения общей биологии более важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения.
В последние годы несколько независимых групп исследователей доказали, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться [64] 64 . Taller J. et al.
[65] 65 . Fan, S.-Y. 1999.
[66] 66 . Hirata, Y. et al.
. Пигментные посредники или синтезирующие пигмент ферменты или регуляторы экспрессии генов смешаны благодаря мобильности молекул информационной РНК в пределах всего растения [67] 67 . Crawford K. M., Zambryski P. C. 1999.
.
У растений общее содержание ДНК остается неизменным, в то время как последовательность нуклеотидов меняется в разных клетках по-разному.
С точки зрения общей биологии более важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения. Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически (то есть отличиями внешних признаков) или даже генетически (на основе записанной наследственной информации) идентичными. Геномы их клеток могут разойтись в результате соматических мутаций, соматических рекомбинаций (результаты относительно общего митотического кроссинговера) или в результате наследственных (но часто обратимых) изменений (в основном — метиляций, то есть присоединения метильной группы к ДНК) генома [68] 68 . Otto SP, Hastings IM. 1998.
.
Читать дальше