Природная система обладает внутренней энергией, веществом, информацией и динамическими качествами, связанными между собой настолько, что любое изменение показателей одного из них вызывает в других или в том же, но в ином месте или в другое время, сопутствующие функционально-количественные такие же перемены, сохраняющие сумму вещественно-энергетических, информационных и динамических показателей всей природной системы.
Среднемаксимальный переход с одного трофического уровня экологической пирамиды на другой 10% (от 7 до 17) энергии (или вещества в энергетическом выражении), как правило, не ведет к неблагоприятным для экосистемы (и теряющего энергию трофического уровня) последствиям.
Трофический уровень — совокупность организмов, объединенных типом питания. Различают пять трофических уровней:
— 1 — продуценты;
— 2 — первичные консументы (растительноядные организмы);
— 3 — вторичные консументы (хищники) и паразиты первичных консументов;
— 4 — вторичные хищники, нападающие на других хищников, и паразиты вторичных консументов;
— 5 — надпаразиты высоких порядков.
13. Экологические пирамиды, Эффект пирамиды, Пирамиды Эльтона
В пищевой цепи количество энергии, получаемой в процессе метаболизма, уменьшается по мере ее переноса с одного трофического уровня на другой. Наиболее продуктивный трофический уровень образуют зеленые растения (первичные продуценты), менее продуктивны растительноядные животные, еще менее — плотоядные. Продуктивность каждого трофического уровня ограничивается продуктивностью уровня, непосредственно ему предшествующего. Поскольку растения и животные расходуют часть энергии на поддержание своего существования, все меньше и меньше энергии передается в результате процессов роста и размножения каждому из вышележащих трофических уровней. Такая необратимая линейная направленность передачи веществ и энергии по пищевым цепям графически изображается в виде пирамиды. См. также Пирамиды Эльтона.
Изменение энергии природной системы в среднем на 1% (от 0,3 до единицы процентов) выводит систему из статического равновесного состояния.
15. Закон критических величин фактора
Если хотя бы один из экологических факторов приближается или выходит за пределы критических (пороговых или экстремальных) величин, то, несмотря на оптимальное сочетание остальных величин, особям грозит смерть. Такие сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или его популяций в каждый конкретный отрезок времени.
16. Закон относительности действия лимитирующих факторов. Закон Лундегарда — Полетаева
Форма кривой роста численности (объема) популяции (биомассы) зависит не только от одного химического фактора с минимальной концентрацией, но и от концентрации и природы других ионов, имеющихся в среде.
17. Закон одностороннего потока энергии в ценоэкосистемах (биоценозах)
Энергия, получаемая биоценозом, путем эндотермического фотосинтеза автотрофными огранизмами-продуцентами вместе с их биомассой передается гетеротрофным организмам-консументам (сначала фитофагам, от них зоофагам первого порядка, затем второго и третьего порядков) и микроорганизмам-редуцентам. Направление всего этого энергетического потока необратимо и выражено в виде экологической пирамиды.
18. Закон относительной независимости адаптации
Степень выносливости к какому-либо фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие значительные изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима; эвритермные виды могут быть стеногалинными, стенобатными или наоборот.
19. Закон покровов (покрытия) тела
Плотность покровов тела млекопитающих и птиц достигает максимума в холодных и засушливых областях. Эта особенность отражает своеобразные адаптации животных — механизмы терморегуляции в условиях экстремального температурного режима.
Выступающие части тела теплокровных животных (конечности, хвост, уши и др.) относительно увеличиваются по мере продвижения от севера к югу в пределах ареала одного вида. Явление вытекает из принципа уменьшения теплоотдачи при сокращении отношения поверхности тела к объему. Согласно правилу Аллена, теплокровному животному, обитающему в регионах с холодным климатом, необходимо, чтобы сильно выступающие части были короткими, а животным, обитающим в регионах с теплым климатом, напротив, сильно выступающие части тела создают определенную выгоду. Правило является частным случаем правила Бергмана и установлено Дж. Алленом в 1877 г.
Читать дальше
Конец ознакомительного отрывка
Купить книгу