4 См. комментарий Платона, написавшего в «Государстве», 600A, что Пифагор прославился благодаря тому, что «создал определенный образ жизни». В большинстве работ по истории философии, логики и естественных наук проявляется тенденция подчеркивать то, что у этой школы было «научного», а религиозную сторону ее учения и жизни считать чем-то отдельным от науки и второстепенным. Гатри восстанавливает нарушенное равновесие и рисует перед читателем эту школу на ее религиозном фоне, но его интерпретацию полезно было бы дополнить более профессионально-научными рассказами о пифагорейцах, взятыми из работ по истории естественных наук, математики и астрономии.
5 То, что Аристотель занимал позицию посередине между формализмом и материализмом, заставило его очень часто упоминать о пифагорейцах в своих сочинениях, особенно в «Метафизике» (например, 995а23, 987a9.b2, 986a15, 1002a8, 1072b30, 1078b21 и многие другие места).
И тезис «числа – это вещи», и тезис «вещи – это числа» он часто упоминает как центральные постулаты этой школы, но существуют разные точки зрения относительно надежности этого свидетельства Аристотеля.
6 Очень ясно сформулированную оценку фундаментальной математики и ее открытия Пифагором см. в книге W h i t e h e a d A.N. Science and the Modern World. Работа Нойгебауэра (см. выше, глава I, пункт 7) немного изменяет наше мнение, что греки создали математику из ничего, но точка зрения Клэджетта и Самбурского, хотя эти двое должным образом учитывают новые открытия, как мне кажется, в основном совпадает с позицией Уайтхеда.
7 Heath Т. History (Т. Хит). См. также его издание «Элементов» Евклида в 3 томах. Во времена Платона уже существовали книги об «элементах геометрии», и Хит считает методы доказательства теорем I–V Евклида строго пифагорейскими. В этой и последующих главах греки показаны больше сделавшими для разработки формальной логики и больше ценившими аксиомо-дедуктивный метод формулирования доказательств, чем считали многие историки. Доводы против точки зрения, что до Аристотеля «логика» была примитивной и аморфной, как еще считают некоторые выдающиеся ученые нашего времени, см. в: S p r a g u e K.K. Plato's Use of Fallacy (К. Спрэг) и в моем кратком изложении аргументации Платона из его «Парменида» (Plato on the One).
8 Хотя пифагорейцы сознательно отрицали существование каких-либо четких границ между фундаментальной математикой, прикладной математикой, физикой и философией, они также иногда создавали достаточно впечатляющие и строго гипотетически-дедуктивные доказательства. Хорошим примером этого может служить сохраненное для потомства в общих чертах Аристотелем косвенное доказательство того, что квадратный корень из двух является иррациональным числом.
См. книгу H e a t h Т. Mathematics in Aristotle и History of Greek Mathematics I.
9 В современной формальной логике реальность абстрактных сущностей остается темой для споров (центром которых часто становится профессиональный терминологический вопрос о том, имеет ли по-настоящему смысл оперировать терминами «существования» («существует такой__ __, что__ _»), подставляя на места, отмеченные здесь чертой, названия абстрактных свойств или классов. См.: Quine W.V. Mathematical Logic (В. Квин) и Korner S. The Philosophy of Mathematics (С. Кернер).
10 Например, есть сведения о том, что в начальный период существования школы Пифагора пифагорейцы связывали геометрические формы известных им «правильных тел» со свойствами земли, огня и воды. Эта геометрическая молекулярная теория гораздо позже получила полное развитие у Платона. Но и мысль, что природа предпочитает симметрию, и мысль, что такие качественные различия, как те, которые существуют между землей и огнем, возможно, объясняются различием в форме частиц, – обе эти мысли могли возникнуть еще во времена самого Пифагора и иметь какое-то экспериментальное подтверждение. Ridgeway W. (У. Риджуэй) в статье What Led
Pythagoras to the Doctrine that the World was Built of Numbers? сопоставил свидетельства древних о том, что Пифагор сам был резчиком по драгоценным камням, и тот факт, что некоторые хорошо известные людям кристаллы по своей геометрической форме – правильные тела, и предположил, что форма этих кристаллов могла подсказать Пифагору его математический взгляд на природу. Конечно, это не может быть единственным и достаточным объяснением идей Пифагора, но связь между ними и формами кристаллов кажется вполне вероятной. Риджуэй упоминает о пирамидах и двойных пирамидах кварца, кубиках железного колчедана и свинцового блеска, двенадцатигранных кристаллах граната и шестигранных цилиндрических кристаллах берилла. Предположение, что эти случаи симметрии в природе были известны пифагорейцам и, возможно, повлияли на их взгляды, становится, по-моему, еще правдоподобнее, если вспомнить, что в число инструментов резчика по драгоценным камням могли входить увеличительные линзы из кристаллов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу