Станислав Мешавкин - Азимут «Уральского следопыта»

Здесь есть возможность читать онлайн «Станислав Мешавкин - Азимут «Уральского следопыта»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Свердловск, Год выпуска: 1983, Издательство: Средне-Уральское книжное издательство, Жанр: История, Публицистика, Биографии и Мемуары, Прочая документальная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Азимут «Уральского следопыта»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Азимут «Уральского следопыта»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга посвящена 25-летнему юбилею журнала «Уральский следопыт». Составили ее очерки краеведческого характера, на протяжении ряда лет печатавшиеся на страницах журнала. Четыре раздела сборника — как четыре стороны света, и в каждой ждет новое открытие, причем не одно. В добрый путь по азимуту «Уральского следопыта», читатель!

Азимут «Уральского следопыта» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Азимут «Уральского следопыта»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В ноябре 1877 года вице-президент Петербургской Академии наук, известный математик Виктор Яковлевич Буняковский получил письмо, в котором далекий уральский корреспондент сообщал: 2^(2^12) +1 — составное и один из делителей его равен 114 689. А позже тот же корреспондент сообщил Буняковскому, что и число 2^(2^23) +1 тоже составное и один из делителей его равен 167 772 161. Проверку делимости первого числа Первушина провел сам Буняковский, второго — профессор Егор Иванович Золотарев. Стало ясно: Первушин прав. Сенсация! Академик В. Я. Буняковский в донесении в отделение физико-математических наук Академии по поводу первой записки Первушина сказал: «По моему мнению, факт о новом случае делимости чисел вида 2^(2^n) + 1 не лишен научного интереса для занимающихся теорией чисел и желательно, чтоб он получил гласность». Академия поручила Буняковскому составить заметку. Что он и сделал. Эта заметка была опубликована на русском языке в «Записках Академии» и на французском языке в «Бюллетене Академии наук». Заметки были опубликованы вовремя, ибо через два месяца в записках Туринской Академии наук Италии была опубликована статья французского математика Э. Люка, в которой он приводит этот же случай делимости. Приоритет Первушина не вызывал сомнения. Наконец о математике с Урала заговорили в академических кругах как о крупном даровании, как о человеке фантастического трудолюбия. Сколько сил и времени надо было затратить, доказывая делимость этих чисел! Чтобы хоть немного почувствовать это, достаточно знать, что в числе 2^(2^23) + 1 — 2 525 223 цифры.

Только одержимый человек мог оперировать такими громадными числами и добиваться при этом выдающихся успехов!

Первушина влекли и совершенные числа.

Если сложить все делители натурального числа, но не равные этому числу, то эта сумма в одном случае будет меньше самого числа, а в другом — больше. Например, сумма делителей числа 8 равна 1 + 2 + 4 = 7, то есть меньше 8, а сумма делителей числа 12 равна 1 + 2 + 3 + 4 + 6 = 16, то есть больше 12. Естественно, возникает вопрос о существовании таких чисел, сумма делителей которых равнялась бы этим числам. Такие числа есть. И называются они совершенными.

Еще в Древней Греции знали совершенные числа 6 и 28.

Известный древнегреческий математик Евклид нашел еще два совершенных числа — 496 и 8128.

Только в 1460 году было найдено пятое совершенное число — 33 550 336. В шестнадцатом веке были найдены шестое и седьмое совершенные числа. В восемнадцатом веке Леонард Эйлер нашел восьмое совершенное число. Вот оно: 2 305 843 008 139 952 128. Прав был древнегреческий математик Никомах Герасский, который, рассуждая о совершенных числах, писал: «Совершенные числа красивы. Но известно, что красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии».

Прошло более ста лет после того, как Эйлер нашел восьмое совершенное число. 27 октября 1883 года вице-президент Петербургской Академии наук академик В. Я. Буняковский получил очередную корреспонденцию от уральского математика. На этот раз Первушин сообщил, что нашел девятое совершенное число. Это число громадно и содержит 37 цифр. Для этого ему пришлось доказать, что число 2 61 — 1 — простое. Оно равно 2 305 843 009 213 693 951. Долгое время это было самым большим из известных простых чисел. В математике это число в честь первооткрывателя названо числом Первушина. Уму непостижимо, как мог он «вручную» найти гигантское число. Выдающийся французский математик, друг Декарта и Ферма, один из основателей Парижской Академии наук Марен Мерсенн говорил, что вечности не хватит для проверки простоты числа, имеющего 15—20 десятичных знаков. А в числе Первушина их 37.

Советский историк математики профессор И. Я. Депман так сказал по этому поводу: «И. М. Первушин, вычислив девятое совершенное число, поистине совершил настоящий подвиг».

Получив письмо Первушина, петербургские академики растерялись. Уральский математик как всегда сообщал им только результат своих вычислений без каких-либо выкладок и объяснений, а проверить результат никто не решался. Академик Буняковский просил Первушина сообщить, каким методом получил он результаты. Буняковский предложил Первушину объединить разрозненные записки в монографию, где были бы изложены не только результаты, но и доказательства в доступной форме. Но Первушин, по-видимому, был другого мнения. Несмотря на то, что сам писал: «Дорога не только сама истина, но и дорога к ней», он почему-то никогда не показывал эту дорогу. Он не рассказывал никому, как добивался своих выдающихся результатов. Может быть, ему мешала на высоком научном уровне изложить свои выкладки недостаточная математическая подготовка? Первушин достиг выдающихся математических результатов благодаря математической интуиции. Вот факт. Предлагая казанскому математическому обществу решить задачу по теории чисел, Иван Михеевич писал: «Обществу не угодно ли будет взять на себя труд вышеозначенную задачу решить теоретически прежде, чем я ее решу через 20 лет практически». В этих словах, как нам кажется, весь Первушин как математик.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Азимут «Уральского следопыта»»

Представляем Вашему вниманию похожие книги на «Азимут «Уральского следопыта»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Азимут «Уральского следопыта»»

Обсуждение, отзывы о книге «Азимут «Уральского следопыта»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x