In the 1950s, the Strategic Air Command introduced the Special Weapons Emergency Separation System (SWESS). If an aircrew were disabled during an attack while over enemy territory, SWESS would automatically release bombs on board, once the plane fell below a specified altitude. This became known as the “dead-man’s switch.”
For 30 years the Strategic Air Command kept an airborne command post aloft, originally named National Emergency Airborne Command Post, or NEACP (pronounced “kneecap”), and ultimately called Looking Glass. This ever-flying patrol enabled the U.S. to retaliate, even after a surprise attack. When the Cold War ended, so did the 24-hour airborne command post patrols.
APPENDIX 3:
INTELLIGENCE BIASES AND THE NUCLEAR BALANCE
MUCH HAS BEEN MADE OF THE “ACTION-REACTION” INTERPLAY OF the superpower arms race and of imaginary missile gaps allegedly invented to spur the U.S. arms buildup. The truth is more complex: what many observers (and even some senior-level policy makers in various administrations) thought was conspiracy was in fact, as is usual in human affairs, a case of blunder.
In 1976 Albert Wohlstetter proved that American intelligence estimates consistently underestimated Soviet deployments, with even high-end estimates often below the actual Soviet numbers. Far from improving with experience, these estimating errors grew worse with time . Convenient assumptions guided intelligence policy, rather than logical inferences from incoming evidence.
Intelligence underestimates beginning in the mid-1960s are best understood against the earlier overestimates of the late 1950s and early 1960s. Then, the focus was on a “missile gap”—the idea that the United States, with some 200 ICBMs, had fewer than the Soviets. Because these early overestimations of the Soviet arsenal have been a huge marker in nuclear policy debates for half a century, they merit closer examination.
In The Wizards of Armageddon , Fred Kaplan discusses “the gap that never was.” In 1960, President Eisenhower’s last year, intelligence analysts projected that the Russians would field 50 to 200 ICBMs in the early 1960s. But U-2 reconnaissance flights—flying up to 70,000 feet above land—revealed no ICBMs. On August 10, 1960, the air force launched the first Discoverer satellite (circling in highly elliptical polar orbits, these satellites swoop low—a few hundred miles [56] Anything less than a thousand miles above Earth is “low” for a satellite, whereas a hundredth of that is high for a plane. Spy planes like the U-2 (and its faster-flying successor, the SR-71 Blackbird, which could cruise at 85,000 feet, or 16 miles above earth) are among the highest-flying manned non-rocket aircraft. The SR-71 was retired in the 1990s.
—over the target area). Only then did the U.S. acquire the ability to cover all of Soviet Russia’s vast territory, which spans 12 time zones. The new satellite found only four ICBMs, sited at Plesetsk in northeast Russia. In February of 1961, Kennedy’s secretary of defense, Robert McNamara, concluded that there was and had been no ICBM missile gap (or rather, the gap went the other way—America had more ICBMs than Russia). The issue that the new president had flogged so successfully in his campaign was mooted. In June, the CIA issued an intelligence estimate for 1961 that said the Soviets might have up to 50 to 100 ICBMs—and potentially up to 200 by next year (the high end of their earlier 1960 estimate, which they only repudiated that September).
In his landmark book, One Minute to Midnight: Kennedy, Khrushchev and Castro on the Brink of Nuclear War , author Michael Dobbs writes that in 1962 the Pentagon estimated the Soviets had 86 to 110 ICBMs (versus our own 240), but that the actual Soviet total was 42. Surely a contributing factor was Khrushchev’s public bluffing as to how the Soviets were growing ICBMs like sausages, while privately telling his son Sergei that the USSR had little of either product.
However, Paul Nitze explained that there was a second gap: Russia led in medium- and intermediate-range ballistic missiles. These were the main spearhead of Russian missile deployments in Cuba. The threat posed by these missiles guided U.S. policy during the 1962 crisis. Nitze also cited a Soviet budget expert’s assessment that the beginning of a 25-year Soviet strategic force buildup began at least a year before the Cuban Missile Crisis. The early intelligence overestimates of Soviet ICBM deployments surely were a large factor in later intelligence underestimates, via the classic pendulum swing that often follows major organizational failures.
Nitze points out that the theory of National Intelligence Estimates (NIEs) is that they look to non-U.S. capabilities only, and do not attempt “net assessments”—those based upon comparing forces. Yet forward net assessments became what most NIEs did, due to bureaucratic biases in favor of trying to look ahead. It was a task rarely done well, due to biases built into assumptions.
APPENDIX 4:
MISSILE DEFENSE VERSUS MULTIPLE WARHEADS
THE FUNDAMENTAL CONCEPTS OF NUCLEAR ARMS CONTROL WERE developed in the West long before small powers of questionable stability came into possession of nuclear weapons. Calibrated to the threat from a hostile superpower, decisions taken 40 years ago created a mindset that persisted past the demise of that superpower 20 years ago.
Failure of the U.S. to deploy an effective missile defense against a small-power attack is a product of superpower arms control. Binding arms-control constraints began with SALT I in 1972. The Anti-Ballistic Missile (ABM) Treaty severely limited missile-defense design and deployment in the United States. Defensive system design since then has aimed not for the best products that technology and innovation can produce. Rather, system design has been governed by the maximum technological result deemed permissible under strategic arms-control principles as they were understood forty years ago. The result has been systems of perilously stunted capability, making a successful strike by a small power achievable.
Just how this came to pass teaches a crucial lesson in arms-control efforts: how limitations that to many appeared reasonable in one strategic context—the Cold War face-off against a massively armed superpower—proved obsolete and even dangerous decades later, when emerging powers in possession of or seeking small arsenals of far less sophistication menace the free world. Missile defense against 1,000 ICBMs might never work within the limits of existing technologies; defense against 10 or 20 ICBMs might work.
Missile defense became inextricably intertwined with MIRV—multiple independently targeted vehicles (warheads). Put simply, the more warheads could be directed at targets, the harder it would be for defensive systems to intercept them. During the late 1950s and early 1960s, missile defense systems increasingly faced offensive systems whose growing size and hence payload capacity enabled carrying initially lightweight decoys and then, as warhead sizes drastically shrunk, multiple warheads. As attacking warheads increased, the burden on missile defense increased commensurately. As decoys confused sensors, the task of shooting down warheads became far more daunting.
These large offensive systems with multiple warheads were first deployed in 1964 on the U.S. Navy’s Polaris A-3 submarine-launched ballistic missile. Soon after, it became possible to design a missile that dispensed a series of independently targeted warheads. The navy was first to deploy these MIRV systems in 1971. MIRV developments in America and Russia went along roughly in parallel—most American officials were convinced that American restraint on MIRV would not be reciprocated by the Soviets.
Читать дальше