История динамического программирования совсем не проста и я имел к ней определенное отношение.
В конце 50-х годов я придумал способ решения задачи выбора траектории управляемой ракеты, которая обходит некоторую запретную зону так, чтобы с данным запасом топлива перенести максимальный груз. Идея вычислительного процесса мне самому очень понравилась и я ей гордился. Однако В.Г. Срагович, после моего доклада на семинаре нашего отдела мне сказал, что похожую задачу решал молодой киевский математик В.С. Михалевич. И его решение уже опубликовано. Я поехал в Киев и обнаружил, что это действительно так. Правда, он решал задачу профилирования дороги и у него не было дифференциальных уравнений, но идея численной реализации была одна и та же. По-видимому идея метода нам пришла в голову почти одновременно, но Михалевич опубликовал свою работу раньше, тем более, что моя работа была опубликована в закрытом отчете и о ней кроме меня долго никто не знал. Поэтому, когда этот метод решения оптимизационных задач я включил в свой учебник, то назвал его «Киевским веником», назвав Михалевича его первым автором.
Но на этом история не кончается. Оказывается, что года за два до описываемых событий, американский математик Ричард Беллман опубликовал такой же метод и назвал его динамическим программированимем. Мы достали книгу Беллмана и перевели ее на русский язык. Оказалось, что метод киевского веника некий аналог динамического программирования. Он не столь универсален как метод Беллмана, но имеет определенные преимущества при численной реализации для тех конкретны задач, которые решали мы с Михалевичем.
Вот почему мне было так интересно познакомиться с Беллманом и провести с ним почти месяц в Дубровнике. Наши циклы лекций мы читали парралельно и каждый день сопоставляли прочитанное. У нас сложились по человечески дружественные отношения и они прошли через всю жизнь.
В конце 70-х годов у Беллмана обнаружили опухоль в мозге. Он вынужден был уйти с работы в Rend,е и остался только в университете Южной Калифорнии. Болезнь оказалась неизлечимой – ему делали операцию за операцией, но все было бесполезно. Несмотря на то, что он уже не мог работать, унивнерситет сохранил ему полную зарплату. Но ее было недостаточно для того чтобы покрыть все траты на медицину. В прошлом богатая семья оказалась в очень трудном материальном положении. Им пришлось продать дом и жить крайне скромно. Как мне рассказывали наши общие знакомые, особенно тяжелым был последний год и Найна всеми силами стремилась облегчить участь своего мужа, до последнего дня надеясь на благополучный исход.
Планомерность, программный метод и К-К экономика
Все увлечения однажды кончаются. Так и исследования в области теории оптимального управления начали понемногу терять свою привлекательность. Проблематика, конечно, не была исчерпана – любая теория может развиваться неограниченно, но интерес к ней может постепенно сходить на нет. Вот так и случилось с теорией оптимального управления: в семидесятых годах наметился определенный спад интереса к этой теории. И для того были определенные причины.
Прежде всего, мы довольно эффективно научились решать те задачи, которые возникали в инженерной практике. Особенно после того, как были разработаны диалоговые (человеко-машинные) системы оптимизации. В результате их использования многие задачи, как, например, минимизация веса конструкции, при заданной прочности, стали вполне рутинными. Но диалоговые системы уже имеют мало общего с традиционной работой математика. В самом деле, в их основе лежит интуиция исследователя-инженера или физика, хорошо знающего свое конкретное дело. Имея в своем распоряжении пакет программ, реализующих набор возможных математических методов решения оптимизационных задач, исследователь садится перед монитором вычислительной машины, на дисплей которого выводится информация не только в числовой, но и в графической форме.. Перед глазами инженера проходит весь процесс поиска нужной формы конструкции и ее характеристики. Используя тот или иной алгоритм, инженер видит результат очередного шага вычислительного процесса и корректирует свои действия. Такой подход позволяет за считанные минуты решать такие задачи проектирования, которые еще недавно были предметом кандидатских диссертаций.
Вторая причина – крушение многих иллюзий связанных с использованием математических методов в экономике и государственным управлением.
Читать дальше
Конец ознакомительного отрывка
Купить книгу