Применение полимерных материалов дает возможность по-новому решать и задачи форсирования водных преград. В печати сообщалось, например, о пешеходных мостах, собираемых из отдельных секций, которые переносят за плечами солдаты.
Каждая секция длиной 3,3 и шириной 2,1 метра весит около 14 килограммов и представляет собой гибкую слоистую ленту. Средний слой ленты выполнен из полиэтиленового пенопласта с замкнутыми ячейками. Наружные слои ленты изготовлены из полиэтиленовой пленки, армированной нейлоном. Секции усилены также пластмассовыми стержнями, придающими повышенную жесткость ленте в поперечном направлении. Стержни располагаются на расстоянии около метра друг от друга по длине секции. Из секций можно собирать мост большой длины, для чего секции соединяют между собой концами.
Обычные надувные лодки легко повреждаются пулями, осколками. Если же емкости, придающие десант-но-переправочным средствам плавучесть, заполнить пенопластом или другими полимерами, то эти средства становятся практически непотопляемыми. Одним из лучших материалов для таких целей зарубежные специалисты считают эпоксидную смолу с помещенными в ней крошечными пустотелыми стеклянными шариками. Такой материал практически не поглощает воду после затвердения, плотность его в два раза ниже плотности воды, а предел прочности довольно высок.
***
До сих пор мы говорили о том, как новые полимерные материалы позволяют решать некоторые проблемы индивидуальной и коллективной защиты личного состава, проблемы полевого размещения войск, преодоления бездорожья и форсирования водных преград. Но есть и много других боевых проблем, решаемых с помощью новых, обладающих замечательными свойствами полимерных материалов. Чтобы читатель имел и о них представление, приведем еще несколько примеров.
Тончайшая пленка, нанесенная на открытую рану солдата, может спасти ему жизнь. Для этого создан специальный полимер, помещаемый в пузырек под давлением. Легкий нажим на пробку пузырька, и из нее вырывается облачко тонкой пыли из клейкого полимерного вещества, оседающего на пораженное место и образующего тончайшую пленку, останавливающую кровотечение. Такие пузырьки могут находиться в карманах солдат, у санитаров.
Очень удобны полимерные материалы в полевом водоснабжении войск. Легкие и прочные, скатывающиеся в компактные рулоны емкости, легкие трубы, которые не разрушаются в случае замерзания воды, свободно гнутся при прокладке и свариваются, изготавливаются из пластмасс. Небольшой кусок пленки может превратиться в источник живительной влаги в пустыне, в районах, где отсутствует пресная вода или где вода загрязнена. Для этого достаточно вырыть в грунте воронкообразное углубление, глубиной несколько десятков сантиметров и диаметром около метра, и обложить стенки углубления листами растений, а на дно установить кружку или котелок, в который опустить трубку для питья. Сверху углубление закрывается куском прозрачной пленки, края которой обсыпаются грунтом. На середину пленки кладется груз, скажем, камень, чтобы она приобрела форму воронки. На внутренней поверхности пленки конденсируется влага. По каплям она скатывается в кружку. Одно такое углубление за день может дать свыше литра чистой воды.
Итак, созданные химиками новые материалы находят все более широкое и разнообразное применение в военном деле. Несомненно, это открывает новые перспективы совершенствования военной техники и способов ведения боевых действий.
Инженер-капитан 1 ранга В. ГЕРАСИМОВ, кандидат технических наук
Когда говорят об атомном ракетоносном подводном флоте, обычно подчеркивают тот вклад, который внесла в его развитие физика. Действительно, благодаря атомным силовым установкам подводные корабли приобрели способность решать боевые задачи, длительное время не всплывая на поверхность. Однако это не исчерпывало всех проблем, возникавших перед учеными, инженерами, другими специалистами. Немало «поработать» пришлось и химии. Можно сказать больше: эта древняя и в то же время самая молодая наука сыграла решающую роль в превращении подводного корабля с баллистическими ракетами на борту в один из важнейших видов стратегического оружия.
Регенерация «подводной атмосферы»
Впервые в технике вопрос о необходимости создания искусственной атмосферы, пожалуй, встал именно перед конструкторами подводных лодок. Пополнение запасов кислорода в замкнутом объеме и удаление углекислого газа давалось не просто. Достаточно сказать, что лучшие дизель-электрические лодки могли непрерывно оставаться под водой не более трех суток. Теперь атомный подводный корабль в состоянии свыше двух месяцев не подниматься на поверхность, чтобы «глотнуть» воздуха. Как же этого удалось добиться?
Читать дальше