Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности

Здесь есть возможность читать онлайн «Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Квант. Эйнштейн, Бор и великий спор о природе реальности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Квант. Эйнштейн, Бор и великий спор о природе реальности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

     Однажды, когда Чарли Чаплина и Альберта Эйнштейна окружила восторженная толпа, Чаплин заметил: “Меня приветствуют потому, что меня понимают все, а вас — потому, что не понимает никто”. С тех пор наука стала еще менее доступной пониманию публики. Английский журналист рассказывает о проблемах, занимавших физиков первой половины XX века, искусно соединяя описание человеческих черт “небожителей” — авторов квантовой теории — с рассказом о трудной, но веселой науке, которую они творили. Что получилось? Биография идеи, которая читается как триллер. Путеводитель по парадоксальному миру. Научно-популярная книга, которая сбивает с толку и дает почувствовать себя почти гением.

Квант. Эйнштейн, Бор и великий спор о природе реальности — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Квант. Эйнштейн, Бор и великий спор о природе реальности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Юнг направил монохроматический свет на экран со щелью. Пройдя через щель, свет попадал на второй экран с двумя очень узкими параллельными щелями, расположенными близко друг к другу. Как фары автомобиля, эти две щели служили новыми источниками света, или, как писал Юнг, “центрами расхождения, от которых свет благодаря дифракции расходится во всех направлениях” 69. На сплошном экране, расположенном за экраном с двумя щелями, Юнг увидел светлую полосу в центре, окруженную с обеих сторон чередующимися светлыми и темными полосами.

Рис 4 Эксперимент Юнга с двумя щелями Справа картина интерференции Юнг - фото 5

Рис. 4. Эксперимент Юнга с двумя щелями. Справа — картина интерференции.

Юнг использовал аналогию, чтобы объяснить появление “интерференционных полос”. Бросим два камня в озеро. Места, где они падают в воду, находятся на небольшом расстоянии друг от друга. Каждый камень приводит к появлению волн. Зыбь, образованная одним из камней, наталкивается на зыбь, источником которой является другой камень. Там, где встречаются впадины или гребни двух волн, они сливаются, образуя одну новую впадину или гребень. Это конструктивная интерференция. А там, где встречаются гребень и впадина, они гасят друг друга, оставляя поверхность воды невозмущенной. Это деструктивная интерференция.

В эксперименте Юнга световые волны, исходящие из двух щелей, прежде чем попасть на экран, точно так же интерферируют. Яркие полосы являются результатом конструктивной интерференции, темные — деструктивной. Юнг понял, что этот результат можно объяснить, только предположив, что свет — это волна. Корпускулы Ньютона просто привели бы к появлению на экране двух ярких изображений щелей, а между ними все осталось бы темным. Иная интерференционная картина была бы просто невозможна.

В 1801 году Юнгу, впервые выдвинувшему идею интерференции и сообщившему о результатах своих экспериментов, пришлось выдержать яростную атаку в печати. Ведь он посягнул на самого Ньютона! В свою защиту Юнг напечатал брошюру, в которой объяснил свое отношение к Ньютону: “Но, как бы я ни благоговел перед Ньютоном, это не значит, что я должен считать его непогрешимым. Без торжества, но с сожалением я вижу, что и он совершал ошибки, а его авторитет, возможно, иногда даже замедлял развитие науки” 70. Юнг продал один-единственный экземпляр своей брошюры.

Человеком, вслед за Юнгом попытавшимся выйти из тени Ньютона, был французский инженер Огюстен Жан Френель. Он был на пятнадцать лет моложе Юнга и ничего не знал о нем. Френель независимо открыл не только явление интерференции, но и повторил многие другие результаты Юнга. В сравнении с экспериментами его английского коллеги изящные эксперименты Френеля отличались тщательностью, а результаты сопровождались безупречными математическими расчетами. Они были поданы так, что к 1820 году число новообращенных маститых сторонников волновой теории стало расти. Работы Френеля убеждали: волновая теория лучше корпускулярной теории Ньютона объясняет целый ряд оптических явлений. Мало того, Френель опротестовал обвинение, давно тяготевшее над волновой теорией: якобы она не дает ответа на вопрос, почему свет не может поворачивать за угол. Френель утверждал, что может. Но поскольку длина волны света в миллионы раз меньше длины волны звука, отклонение светового луча от прямой линии очень мало, и поэтому его трудно заметить. Волна изгибается только вокруг таких препятствий, размеры которых несущественно превышают длину волны. Звуковые волны очень длинны, и поэтому они могут огибать большинство барьеров.

Убедить оппонентов и скептиков сделать выбор между двумя конкурирующими теориями можно было, поставив эксперимент, для которого эти теории предсказывали разные результаты. Таким экспериментом, проведенным в 1850 году во Франции, стало измерение скорости света в средах плотнее, чем воздух. Оказалось, что в стекле или воде свет распространяется медленнее. Это полностью совпадало с предсказанием волновой теории. Корпускулярная теория Ньютона не могла объяснить, почему свет движется именно с такой скоростью. Но оставался вопрос: если свет — это волна, то каковы ее свойства? Здесь на сцене появляется Джеймс Клерк Максвелл со своей теорией электромагнетизма.

Родившемуся в 1831 году в Эдинбурге сыну шотландского дворянина было предопределено стать величайшим физиком XIX столетия. Свою первую научную работу о математических методах черчения овалов Максвелл опубликовал, когда ему было пятнадцать лет. В 1855 году Кембриджский университет присудил ему премию им. Адамса за исследование устойчивости колец Сатурна. Он показал, что эти кольца должны состоять из маленьких, раздробленных осколков вещества — метеоритов. В 1860 году Максвелл фактически завершил кинетическую теорию газов, объясняющую свойства газа постоянным движением составляющих его частиц. Но главным достижением Максвелла стала теория электромагнетизма.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Квант. Эйнштейн, Бор и великий спор о природе реальности»

Представляем Вашему вниманию похожие книги на «Квант. Эйнштейн, Бор и великий спор о природе реальности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Квант. Эйнштейн, Бор и великий спор о природе реальности»

Обсуждение, отзывы о книге «Квант. Эйнштейн, Бор и великий спор о природе реальности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x