5 Fine (1986), p. 1. Письмо Эйнштейна Д. Липкину от 5 июля 1952 года.
6 Snow (1969), p. 94.
7 Folsing (1997), p. 457.
8 Pais (1994). p 31.
9Там же.
10 Jungk (1960), p. 20.
11 Gell-Mann (1981), p. 169.
12 Hiebert (1990), p. 245.
13 Mahon (2003), p. 149.
14Там же.
Глава 1. Революционер поневоле
1 Planck (1949), pp. 33-34
2 Hermann (1971), p. 23. Письмо Планка Роберту Вильямсу Вуду от 7 октября 1931 года.
3 Mendelssohn (1973), p. 118.
4 Heilbron (2000), p. 5.
5 Mendelssohn (1973), p. 118.
6 Hermann (1971), p. 23. Письмо Планка Роберту Вильямсу Вуду от 7 октября 1931 года.
7 Heilbron (2000), p. 3.
8В XVII веке было известно, что солнечный луч, проходя через призму, разлагается на цвета основного спектра. Считалось, что образование цветной радуги — результат превращения, претерпеваемого светом при прохождении через призму. Ньютон не был согласен с тем, что призма каким-то образом добавляет лучу цвета. Он поставил два эксперимента. В первом луч белого цвета проходил через призму, что приводило к образованию разноцветного спектра. Затем луч одного из цветов попадал на вторую призму. Ньютон утверждал, что если появление различных цветов обязано какому-то изменению, испытываемому светом при прохождении через призму, прохождение луча через вторую призму тоже должно приводить к его изменению. Однако он обнаружил, что какого бы цвета луч ни был, при прохождении через вторую призму он не менял цвет. Во втором эксперименте Ньютону удалось смешать лучи различных цветов и получить белый свет.
9Открытие, случайно сделанное Гершелем и сентября 1800 года, было обнародовано им только на следующий год. Используя разную аппаратуру, оптический спектр можно проецировать на горизонтальную либо на вертикальную поверхность. Приставка “инфра” происходит от латинского слова “ниже”. Если спектр спроецирован на вертикальную поверхность, фиолетовая полоса оказывается вверху, а красная — внизу.
10Длины волн красного цвета и его различных оттенков лежат в интервале от 610 до 700 нанометров (нм), где нанометр — одна миллиардная часть метра. Красный цвет с длиной волны 700 нм имеет частоту 430 триллионов колебаний в секунду. На противоположном конце видимого спектра — фиолетовый цвет и его оттенки с длинами волн от 450 до 400 нм. Частота, соответствующая нижней границе длин волн фиолетового света, — порядка 750 триллионов колебаний в секунду.
11 Kragh (1999), p. 121.
12 Teichmann et al. (2002), p. 341.
13 Kangro (1970), p. 7.
14 Cline (1987), p. 34
15В 1900 году население Лондона составляло около 7 488 000 человек, Парижа — 2 714 000 человек, Берлина — 1 889 000 человек.
16 Large (2001), p. 12.
17 Planck (1949), p. 15.
18 Planck (1949), p. 16.
19 Planck (1949), p. 15.
20 Planck (1949), p. 16.
21Там же.
22В действительности теплота не форма энергии, как это обычно считается, а мера энергии, переданная благодаря разности температур от тела А телу В.
23 Planck (1949), p. 14.
24 Planck (1949), p. 13.
25Лорд Кельвин также дал свою формулировку второго закона: никакое устройство не может преобразовать тепло в работу со стопроцентной эффективностью. Его формулировка эквивалентна формулировке Клаузиуса. Оба по-разному говорили одно и то же.
26 Planck (1949), p. 20.
27 Planck (1949), p. 19.
28 Heilbron (2000), p. 10.
29Там же.
30 Planck (1949), p. 20.
31 Planck (1949), p. 21.
32 Jungnickel and McCormmach (1986), p. 52, Vol. 2.
33Лишь в 1899 году Отто Люммер и Эрнст Прингсгейм назвали открытие Вина законом смещения ( Verschiebungsgesetz ).
34Поскольку частота обратно пропорциональна длине волны, значит, при возрастании температуры растет и частота, на которую приходится максимальная интенсивность излучения.
35Если длина волны измеряется в микронах, а температура — в градусах Кельвина, то эта постоянная равна 2900.
36В 1898 году Берлинское физическое общество ( Berliner Physikalische Gesellschaft), образованное в 1845 году, изменило название и стало называться Немецким физическим обществом (Deutsche Physikalische Gesellschaftzu Berlin ).
37В зависимости от длины волны инфракрасный диапазон можно грубо разделить на четыре области: ближнее инфракрасное излучение, вблизи видимого спектра (0,0007-0,003 мм), средний инфракрасный диапазон (0,003-0,006 мм), дальнее инфракрасное излучение (0,006-0,015 мм) и глубокий инфракрасный диапазон (0,015-1 мм).
38 Капgrо (1976), p. 168.
39 Planck (1949). рp. 34-5
40 Jungnickel and McCormmach (1986), Vol. 2, p. 257.
41 Mehra and Rechenberg (1982), Vol. 1, Pt. 1, p. 41.
42 Jungnickel and McCormmach (1986), Vol. 2, p. 258.
43 Kangro (1976), p. 187.
44 Planck (1900a), p. 79.
45 Planck (1900a), p. 81.
46 Planck (1949), pp. 40-41.
47 Planck (1949), p. 41.
Читать дальше