Более реалистично, считал Бор, предположить, что масса экрана конечна. Хотя по-прежнему экран остается очень тяжелым, при пролете электрона через щель он чуть-чуть сдвинется. Этот сдвиг настолько мал, что в лабораторных условиях заметить его невозможно, однако в абстрактном мире мысленного эксперимента, где измерительные приборы обладают абсолютной точностью, определить его не представляет проблемы. Поскольку экран сдвигается, в процессе дифракции положение электрона в пространстве и во времени точно не определено. Это приводит к неопределенности значений его импульса и энергии. Однако в сравнении со случаем бесконечно тяжелого экрана можно точнее предсказать место, где дифрагированный электрон ударяется о пластину. В пределах, заданных принципом неопределенности, утверждал Бор, квантовая механика дает настолько полное описание отдельного события, насколько это вообще возможно.
Ответ Бора не произвел впечатления на Эйнштейна. Он попросил рассмотреть возможность проконтролировать и измерить импульс и энергию, переданные экраном частице, будь то электрон или фотон, при прохождении через щель. Тогда, возражал Эйнштейн, состояние частицы сразу после прохождения щели можно будет определить с большей точностью, чем та, которую допускает принцип неопределенности. Проходя через щель, говорил Эйнштейн, частица перестает двигаться прямолинейно. Траектория ее движения к экрану определяется законом сохранения импульса, согласно которому сумма импульсов двух взаимодействующих тел (частицы и экрана) должна оставаться неизменной. Если частица отклоняется вверх, экран должен сдвинуться вниз, и наоборот.
Эйнштейн использовал введенный Бором для своих целей подвижный экран и модифицировал свой мысленный эксперимент, поместив еще один экран с двумя щелями между подвижным экраном и фотопластинкой. Эйнштейн уменьшил интенсивность пучка настолько, что единовременно только одна частица могла пройти через щель в первом экране S 1 и через одну из двух щелей экрана S 2. Каждая из частиц, попадая на фотографическую пластинку, оставляет на ней неисчезающий след. Дальше происходит нечто поразительное. То, что вначале казалось случайными вспышками, по мере того как все больше частиц оставляет след на пластинке, следуя статистическим закономерностям, превращается в картину интерференции, состоящую из светлых и темных полос. Поскольку каждая частица ответственна только за одну отметку на экране, она, вне всякого сомнения, подчиняясь статистическому императиву, вносит вклад в изображение на пластинке.

Рис. 15. Мысленный эксперимент Эйнштейна с двумя щелями. Крайний справа рисунок — картина интерференции, которая будет видна на экране.
Контролируя и измеряя передачу импульса от первого экрана частице, можно, утверждал Эйнштейн, определить, куда отклонится частица: по направлению к верхней или нижней щели второго экрана. Исходя из того, где она ударилась о фотографическую пластинку и как двигался первый экран, можно определить, через какую из двух щелей частица прошла. Казалось, Эйнштейну удалось придумать эксперимент, позволяющий измерить координату и импульс частицы точнее, чем это допускает принцип неопределенности. Создавалось впечатление, что такой эксперимент противоречит еще одной доктрине копенгагенской интерпретации: в рамках принципа дополнительности Бора постулируется, что в одном эксперименте могут проявляться лишь корпускулярные либо волновые свойства электрона или фотона.
В аргументации Эйнштейна должен был найтись изъян. Чтобы его отыскать, Бор решил проанализировать, какие устройства использовались в этом эксперименте. Он сделал небольшой чертеж. Бор сосредоточился на первом экране, понимая, что возможность контролировать и измерять импульс, переданный от частицы экрану, зависит от того, может ли экран двигаться вертикально. Именно возможность наблюдать, сдвинулся экран вверх или вниз после прохождения частицы через щель, позволяет определить, прошла частица через верхнюю или через нижнюю щель во втором экране после того, как она ударилась о фотопластинку.
Эйнштейн, несмотря на годы, проведенные в патентном бюро, не учел деталей. А Бор знал, что квантовый дьявол именно в них. Он заменил первый экран другим, подвешенным на двух пружинах, закрепленных на неподвижной рамке. Это позволяло измерить импульс, переданный экрану при прохождении частицы через щель. Измерительное устройство было простым: стрелка, закрепленная на рамке, и шкала, нанесенная непосредственно на экран. Несмотря на свою простоту, прибор был достаточно чувствительным, чтобы в мысленном эксперименте можно было наблюдать взаимодействие одной частицы и экрана.
Читать дальше