Зритель, который смотрит представление, вероятно, даже не разглядит, есть ли у каната толщина, — а если он совсем неотесанный провинциал, поверит, будто канат имеет бесконечно малую толщину и на самом деле является одномерной структурой.
А вот у муравья, ползущего по канату, никаких подобных иллюзий нет. Он может ползти не только взад-вперед по веревке, но и вокруг каната — и это эквивалентно одному из скрытых измерений в теории струн. Некоторые измерения, вероятно все недостающие семь, весьма и весьма компактны. Вероятно, мы не замечаем этих компактных измерений, поскольку обречены плыть на трехмерной бране по Вселенной, где измерений больше.
Между тем маленькие измерения могут играть очень важную роль, поскольку главный режиссер этого спектакля — квантовая механика. Что будет, если вокруг одного из маленьких измерений обернется петля из струны? В главе 2 мы видели, что если поместить частицу в крошечную коробочку (или в крошечное измерение), частица приобретает уйму дополнительной энергии. В нормальной обстановке мы увидим выражение этой энергии — частица начнет метаться туда-сюда. Единственная сложность состоит в том, что метаться она не может. А следовательно, дополнительная энергия становится, согласно великому уравнению Е = mc 2 , массой частицы.
Веда в том, что нужная для этого энергия примерно в 10 16раз превышают энергии, которых мы способны добиться в БАК. Иначе говоря, эту теорию, по всей видимости, нельзя проверить экспериментально, так как еще очень и очень долго у нас не будет никакой технической возможности проделать такой эксперимент.
Что бы нам ни говорили, точность научной теории никогда не удается доказать. Если мы говорим, будто теория «верна», значит, нам не удалось ее опровергнуть. Признак хорошей научной теории — то, что ее сторонники должны придумать эксперимент или несколько экспериментов, в ходе которых теория может оказаться ошибочной, но не оказывается. Концепцию «опровергаемости», ставшую основой современной науки, ввел философ Карл Поппер. Это и есть главный недостаток так называемой теории разумного замысла. Недостаточно просто провозгласить, будто ваша теория верна, даже если она объясняет все наблюдаемые на сегодня феномены. Домашнее задание: придумать тест, а в идеале — много тестов, которые ваша теория может не пройти, и если она их не пройдет, вам придется признать, что вы заблуждались. Теория разумного замысла этого не делает.
Как обстоят дела с этим у теории струн? Вспомним некоторые популярные книги, вышедшие в последние годы, с названиями вроде «Даже не ошибка» (Питер Войт) или «Упрямая физика» [152] Wolt, Peter. Not Even Wrong; Smolin, Lee. The Trouble with Physics.
.
Главная мысль обеих этих книг — что теорию струн можно привести в соответствие со стандартной моделью, причем нельзя поставить эксперимент, который бы ее опроверг. Отчасти сложность состоит в том, что единой версии теории струн не существует. Количество теорий струн на сегодняшний день колоссально — Смолин насчитывает 10 500, число настолько нелепое по размаху, что даже Знак, герой «Улицы Сезам», подумал бы о смене карьеры.
Похоже, что под теорию струн со всеми ее вариантами вполне можно подогнать любые искажения физических законов. А мы надеялись на нечто прямо противоположное. В идеале мы хотели получить фундаментальный физический закон, который не только опишет все существующие законы физики, но и не потребует для этого никакой подгонки теории.
В результате нет никакого определенного представления о том, что такое теория струн, а следовательно — как ее проверить. Как пишет Смолин: «На сегодня нет никакой реальной возможности проделать эксперимент, который определенно подтвердил бы или опроверг какое бы то ни было конкретное предположение этой теории». Мы готовы сделать крупную ставку на то, что в обозримом будущем не будет проделан никакой опыт по исследованию количества измерений во Вселенной, так что даже если мы живем не в трехмерном мире, надо вести себя так, словно измерений именно три.
2. Что такое темная энергия?
Наблюдения показывают, что во Вселенной, похоже, существует невидимая, однако вездесущая темная энергия, которая подталкивает Вселенную к экспоненциальному расширению. Стандартная модель даже выдвигает кандидата, обладающего всеми качествами темной энергии. Это так называемая энергия вакуума, и, как мы видели, главная сложность состоит в том, что наша теория предполагает, будто ее примерно в 10 100раз больше, чем показывают наблюдения. Мы бы еще пережили, если бы темная энергия равнялась нулю — это как-то «естественно». Но такое масштабное расхождение как-то нервирует. Одна из самых крупных проблем — то, что теории струн и квантовой гравитации нужно очень уж видоизменять, чтобы подогнать под ту плотность темной энергии, которую мы видим. По нашим представлениям, Теорию Всего можно было бы считать хорошей, если бы плотность темной энергии следовала из нее сама собой, и это одна из первых проверок, которым следует подвергать подобные теории.
Читать дальше