Если теория Бете об образовании солнечной энергии была верна, то Солнце должно было представлять собой обильный источник нейтрино. Но в статье «Источники энергии звезд» (Energy Production in Stars), опубликованной в 1939 г., Бете не упомянул, что для проверки этой теории можно было бы попытаться отловить солнечные нейтрино. В тот период нейтрино еще воспринимались как теоретический конструкт, поэтому неудивительно, что Бете предпочел о них умолчать. Даже в пророческом докладе Понтекорво от 1946 г. солнечные нейтрино упоминаются лишь вскользь. Однако возможность заглянуть в недра Солнца, изучив солнечные нейтрино, распалила любопытство Рэя Дэвиса.
На самом деле Дэвис пытался обнаружить солнечные нейтрино еще в ходе эксперимента, поставленного в Брукхейвене. Детектор, который он использовал, и близко не обладал чувствительностью, которая для этого требовалась, однако Дэвис вычислил ориентировочное максимальное количество нейтрино, ежесекундно прилетающих к нам от Солнца, и указал эти данные в своей публикации. Один физик решительно отверг предложенную Дэвисом оценку, заявив: «Не могу себе представить научную статью, автор которой описал бы такой эксперимент: физик забирается на гору, оттуда пытается дотянуться рукой до Луны. Ему это не удается, из чего физик делает вывод, что расстояние от вершины до Луны больше двух с половиной метров». Такой скепсис не смутил отважного экспериментатора. Да, первый опыт Дэвиса был очень малым шагом, но тем не менее очень важным.
Самая большая сложность, с которой столкнулся Дэвис, заключалась в следующем: большинство нейтрино, образующихся в ходе протон-протонного цикла, обладали слишком малой энергией, поэтому не могли достаточно сильно ударить атом хлора и превратить его в аргон. Таким образом, обнаружить их в эксперименте Дэвиса было невозможно. Однако Дэвис не оставлял надежды, полагая, что не все нейтрино одинаковы и некоторые должны обладать достаточной энергией, чтобы детектор на них отреагировал. В частности, он знал, что время от времени третий этап протон-протонного цикла протекает «не по правилам»: вместо столкновения двух ядер гелия-3 (с образованием гелия-4) происходит столкновение гелия-3 и гелия-4, в результате чего образуется бериллий-7. В свою очередь, бериллий-7 может прореагировать с протоном и стать бором-8. Изотоп бор 8 нестабилен; он распадается в бериллий-8 и при этом испускает позитрон и нейтрино. Именно такой нейтрино должен обладать достаточной энергией, чтобы его можно было зафиксировать в эксперименте Дэвиса. К радости Дэвиса, в 1958 г. физики из Научно-исследовательской лаборатории ВМС США в Вашингтоне установили, что такая альтернативная реакция происходит в тысячу раз чаще, чем предполагалось ранее. Двое астрофизиков – Вилли Фаулер из Калифорнийского технологического института и Аластер Кэмерон, в тот период работавший в канадской лаборатории на реке Чок-Ривер, – осознали всю важность этого открытия для отслеживания солнечных нейтрино и предупредили Дэвиса, что его шансы на успех возросли.
Воодушевившись добрыми новостями, Дэвис в конце 1959 г. вновь решил поохотиться на солнечные нейтрино. На этот раз он установил детектор в известняковой шахте Барбетон в штате Огайо. Глубина шахты составляла более 700 м, поэтому Дэвис рассчитывал, что ему удастся избавиться от надоедливых космических лучей, которые в иных условиях перекрывали сигналы нейтрино. Первые оценки Дэвиса относительно разрешающей способности этого эксперимента были скорее оптимистическими: Дэвис полагал, что сможет ежедневно регистрировать хотя бы несколько солнечных нейтрино. Но ему предстояло испытать еще одно разочарование: проверив детектор, он не нашел никаких следов неуловимых солнечных посланцев. Вскоре после этого Дэвису довелось узнать и о другом неприятном факте. По данным ученых из лаборатории ВМС, синтез бериллия-7 был достаточно простой реакцией. Однако другие исследователи обнаружили, что следующий этап реакции – превращение бериллия-7 в бор-8 (с поглощением протона) – случается гораздо реже. Таким образом, количество высокоэнергетических солнечных нейтрино должно быть очень низким, и эксперимент Дэвиса не позволяет их зарегистрировать. В 1960 г. Фред Рейнес резюмировал ситуацию так: «Даже при опыте с огромными детекторами, содержащими тысячи или сотни тысяч галлонов [23] Американский галлон – мера жидкости, равная 3,78 л. – Прим. пер.
[тетрахлорида углерода], вероятность успеха столь невелика, что, пожалуй, экспериментаторам стоит оставить такие попытки». Большинству физиков ситуация казалась безнадежной. Некоторые ученые, не столь упорные, как Дэвис, просто решили смириться и заняться чем-нибудь другим. Однако Дэвис решил провести более масштабный эксперимент, увеличив свою установку в 100 раз. Новый резервуар был сравним по объему с олимпийским плавательным бассейном. Соответственно, такой детектор был гораздо чувствительнее предыдущих моделей.
Читать дальше
Конец ознакомительного отрывка
Купить книгу