В 1664 г. Гюйгенс был избран членом недавно созданной Королевской академии наук во Франции. Ему предложили жалованье, поэтому на следующие два десятилетия он перебрался в Париж и там начал работать над волновой теорией света. Написанный им в 1678 г. «Трактат о свете» был опубликован только в 1690 г., возможно, потому, что Гюйгенс долгое время надеялся перевести работу с французского на латынь, но у него так и не нашлось на это времени. Гюйгенс умер в 1695 г. Мы вернемся к его волновой теории света в главе 14.
В статье, опубликованной в Journal des Sçavans в 1669 г., Гюйгенс дал правильные формулировки законов столкновения твердых тел (которые Декарт понял неправильно): они сводились к тому, что сегодня называется законами сохранения импульса и кинетической энергии {229}. Гюйгенс заявлял, что он подтвердил свои результаты экспериментально, возможно, изучая столкновение соударяющихся грузов маятника, для которых начальные и конечные скорости можно было рассчитать точно. И, как мы увидим в главе 14, Гюйгенс в «Маятниковых часах» рассчитал ускорение движения по кривой – этот результат имел огромную важность для Ньютона.
Пример Гюйгенса показывает, как далеко ушла наука от имитации математики, от упования на дедукцию и стремления к абсолютной точности, характерной для математики. В предисловии к «Трактату о свете» Гюйгенс объясняет:
«Доказательства, приводимые в этом трактате, отнюдь не обладают той же достоверностью, как геометрические доказательства, и даже весьма сильно от них отличаются, так как в то время, как геометры доказывают свои предположения с помощью достоверных и неоспоримых принципов, в данном случае принципы подтверждаются при помощи получаемых из них выводов; природа изучаемого вопроса не допускает, чтобы это происходило иначе» {230}.
Практически это и есть наиболее исчерпывающее описание методов современной физики.
В работах Гюйгенса и Галилея по механике движения эксперименты проводились для того, чтобы доказать несостоятельность физики Аристотеля. То же самое можно сказать и об изучении давления воздуха в то время. Невозможность существования вакуума была одной из доктрин Аристотеля, которую подвергли сомнению в XVII в. Со временем ученые поняли, что такие явления, как всасывание, которые, как казалось раньше, имеют причиной то, что природа не принимает вакуума, в действительности происходят из-за давления воздуха. В этом открытии ключевую роль сыграли три фигуры в Италии, во Франции и в Англии.
Копатели колодцев во Флоренции знали, что отсасывающие насосы не могут поднимать воду на высоту, большую чем 18 локтей, или 9,7 м (реальное значение на уровне моря ближе к 10,2 м). Галилей и другие ученые считали, что это демонстрирует существование предела, после которого природа перестает бояться пустоты. Другое объяснение предложил Эванджелиста Торричелли, флорентиец, который занимался геометрией, движением брошенных тел, гидравликой, оптикой и зачатками математического анализа. Торричелли доказывал, что это ограничение отсасывающих насосов имеет место из-за того, что вес воздуха, давящий на воду в колодце, может поддерживать столб воды высотой не более 18 локтей. Этот вес распределен по всему объему воздуха, и любая поверхность, соприкасающаяся с воздухом, горизонтальна она или нет, испытывает с его стороны действие силы, пропорциональной площади этой поверхности. Сила, действующая на единицу площади (или давление) , прилагаемая воздухом в состоянии покоя, равна весу вертикального столба воздуха, достигающего верхних слоев атмосферы, деленному на площадь сечения этого столба. Точно так же давление действует и на поверхность воды и суммируется с давлением воды, поэтому, когда давление воздуха в верхней части вертикальной трубы, погруженной в воду, уменьшается с помощью насоса, вода в трубе поднимается, но только до предела, ограниченного конечным давлением воздуха.
В 1640-х гг. Торричелли поставил ряд экспериментов, чтобы доказать эту мысль. Он полагал, что, поскольку вес определенного объема ртути в 13,6 раз больше веса того же объема воды, максимальная высота столбика ртути в вертикальной стеклянной трубке, закрытой сверху, которую можно поддерживать воздухом, независимо от того, давит ли он на поверхность лужицы ртути, в которую погружен конец трубки, или на открытый конец трубки, должна составлять 18 локтей, деленные на 13,6. Или, если использовать более точные современные значения, 33,5 фута/13,6 = 760 мм.
Читать дальше
Конец ознакомительного отрывка
Купить книгу