Стивен Вайнберг - Объясняя мир. Истоки современной науки

Здесь есть возможность читать онлайн «Стивен Вайнберг - Объясняя мир. Истоки современной науки» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2015, ISBN: 2015, Издательство: Альпина нон-фикшн, Жанр: Физика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Объясняя мир. Истоки современной науки: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Объясняя мир. Истоки современной науки»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн. Эта книга для всех, кому интересна история, современное состояние науки и те пути, по которым она будет развиваться в будущем.

Объясняя мир. Истоки современной науки — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Объясняя мир. Истоки современной науки», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Не случайно Бэкон стал известен как «удивительный доктор».

В 1264 г. первый колледж Оксфорда был основан Уолтером де Мертоном, некоторое время бывшим канцлером Англии и позже ставшим епископом Рочестера. Именно в Мертон-колледже в XIV в. начались серьезные математические работы. Ключевыми фигурами в них были четверо выпускников колледжа: Томас Брадвардин (1295–1349), Уильям Хейтсбери (ок. 1335 г.), Ричард Суайнсхед (1340–1355 гг.) и Джон Дамблтон (1338–1348 гг.) [13]. Их самое значительное достижение – Мертонская теорема о среднем градусе скорости, которая впервые в истории дала описание неравномерного движения, то есть движения, при котором меняется скорость.

Самое раннее сохранившееся доказательство этой теоремы принадлежит Уильяму Хейтсбери (канцлеру Оксфордского университета в 1371 г.), описанное в труде «Правила для разрешения софизмов» (Regulae solvendi sophismata). Он определяет скорость в любой момент неравномерного движения как отношение пройденного расстояния ко времени, затраченному на преодоление этого расстояния, при равномерном движении с этой скоростью. Так, как это определение сформулировано, оно содержит тавтологию (логическое зацикливание) и практически бесполезно. Более современное определение, возможно, отражающее то, что Хейтсбери имел в виду, гласит, что скорость в любой момент неравномерного движения равна отношению пройденного расстояния ко времени, затраченному на преодоление этого расстояния, считая, что промежуток времени (и соответственно пройденный за это время путь) настолько мал, что изменением скорости можно было пренебречь. Далее Хейтсбери определил равномерно ускоренное движение как неравномерное движение, при котором за любую равную часть времени оно приобретает равное приращение скорости. Затем он приступил к доказательству теоремы:

«…когда любое движущееся тело равномерно ускоряется от не-градуса до некоторого градуса [скорости], то в первую половину времени будет пройдена точно треть того, что будет пройдено во вторую половину. И, если, напротив, равномерно производится ослабление того же градуса или от какого-либо другого до не-градуса, то в первую половину времени будет пройдено точно в три раза большее расстояние, чем то, что будет пройдено во вторую половину времени. Такое движение в целом соответствует среднему градусу этого приращения скорости, которая равна точно половине этого градуса скорости, которая является конечной скоростью» {164}.

Это означает, что расстояние, пройденное за интервал времени, в который тело равномерно ускоряется, – это расстояние, которое оно прошло бы при равномерном движении в этот интервал времени, если бы его скорость была равна среднему арифметическому от реальной скорости. Если что-то равномерно ускоряется от состояния покоя до какой-то конечной скорости, тогда его средняя скорость в этот интервал времени равна половине конечной скорости, таким образом, пройденное расстояние составляет половину конечной скорости, умноженной на затраченное время.

Различные доказательства этой теоремы были предложены Хейтсбери, Джоном Дамблтоном и, наконец, Николаем Оремом. Доказательство Орема более интересно, поскольку он впервые использовал способ представления алгебраических соотношений в графическом виде. Таким образом, он смог свести задачу вычисления расстояния, пройденного телом при равноускоренном движении от нуля до некой конечной скорости, к задаче вычисления площади прямоугольного треугольника, катеты которого соответствуют затраченному времени и конечной скорости (см. техническое замечание 17). Таким образом, теорема о среднем градусе скорости сводится к элементарной геометрической задаче о том, что площадь прямоугольного треугольника равна половине произведения длин его катетов.

Ни профессора Мертон-колледжа, ни Николай Орем, кажется, не попытались приложить теорему о среднем градусе скорости к самому важному случаю, к которому она имеет отношение, – к движению свободно падающих тел. Для них теорема была просто упражнением для ума, доказывающая, что они способны с помощью математики справиться с неравномерным движением. Если теорема о среднем градусе скорости и демонстрирует возросшие возможности математики, то она же и показывает, какими непростыми все еще оставались взаимоотношения между математикой и естественными науками.

Несмотря на то, что вполне очевидно (как продемонстрировал еще Стратон), что падающие тела ускоряются, совершенно неочевидно, что скорость падающих тел возрастает пропорционально времени , что характерно для равноускоренного движения, а не к пройденному падающим телом расстоянию . Если бы темп изменения расстояния при падении (иначе говоря, скорость) был пропорционален расстоянию, то расстояние после начала падения росло бы по экспоненте со временем {165}, точно так же как банковский счет, проценты на котором растут пропорционально количеству денег по экспоненте со временем (хотя, если процент низок, понадобится много времени, чтобы это увидеть). Первым человеком, который предположил, что возрастание скорости падающих тел пропорционально времени падения, вероятно, был доминиканец Доминго де Сото {166}, живший спустя два столетия после Орема, в XVI в.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Объясняя мир. Истоки современной науки»

Представляем Вашему вниманию похожие книги на «Объясняя мир. Истоки современной науки» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Объясняя мир. Истоки современной науки»

Обсуждение, отзывы о книге «Объясняя мир. Истоки современной науки» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x