Предположим, что создана неравновесная среда, которая поглощает фотоны, но не излучает сразу, а хранит энергию некоторое время в одинаковых возбужденных электронных оболочках. Такое продлённое состояние возбуждения называют метастабильным. Если все метастабильные оболочки, как по команде, излучат разом одинаковые фотоны, то это будет то, что нужно. Следует заметить, что в водородоподобном атоме метастабильное состояние невозможно. Сферическая оболочка такого атома не способна «задерживать дыхание», она сразу излучает избыток энергии. Очевидно, здесь нужен твердый прозрачный кристалл, с примесью атомов, у которых электронные оболочки могут раздуваться, как грибообразное облако, над оболочками основных атомов. Оболочки основных атомов будут подпирать грибообразные оболочки примеси, не позволяя им достаточно долго вернуться в исходное состояние. Допустим, такой кристалл мы нашли. Но где тот «спусковой» механизм, который заставил бы все метастабильные оболочки разом излучить одинаковые фотоны?
Его нашел Эйнштейн. Изучая в научных отчетах расхождение баланса между атомами среды и внешними фотонами (из отчетов следовало, что некоторые образцы излучают больше фотонов, чем поглощают), он пришел к выводу, что кроме классического теплового излучения света в веществе присутствует дополнительный квантовый механизм, который создает избыток фотонов. Представим, что в водородоподобном атоме разрешены уровни энергии со следующими значениями: Е = -10, -6, -3, -1, -0.5 и т. д. (эВ). При высокой температуре в образце имеется достаточно атомов, в которых электроны находятся на 2-м уровне: Е 2= -6 эВ. Допустим, в данный атом попадает фотон с энергией hν = 4 эВ. Согласно теории квантов, атом не может поглотить этот фотон, чтобы электрон перешел на более высокий уровень. Для 3-го уровня это много (нужно ровно 3 эВ). Для 4-го уровня это мало (требуется ровно 5 эВ). Зато энергия этого фотона в точности равна избытку энергии электрона относительно первого уровня Е 1= -10 эВ. Получив «удар» именно от фотона 4 эВ, электрон может сбросить излишек энергии 4 эВ в виде кванта 4 эВ и вернуться на 1-й уровень. В результате из атома вылетят два фотона с одинаковой энергией hν = 4 эВ.
Эйнштейн назвал этот механизм «вынужденным излучением», так как чужой фотон вынуждает возбуждённый электрон излучить свой фотон. Если эти два фотона попадут в два других атома, где имеются такие же возбужденные электроны, то после двух столкновений в пространстве появятся четыре фотона с одинаковой частотой. Учитывая скорости фотонов, за долю секунды произойдет лавинообразное размножение фотонов, причем все они будут иметь одинаковую частоту. Если эти фотоны собрать в пучок вогнутыми зеркалами и пропустить через систему линз, то теоретически все излучение будет бить в одну точку и прожигать всё на свете. Дело за малым, нужно подобрать подходящий кристалл.
Мейман использовал кристалл рубина, который состо ит из окиси алюминия с примесью хрома. Особенность рубина в том, что он содержит хром в виде трехвалентных ионов, в то время как обычно хром имеет валентность шесть. При поглощении света рубином три внешние оболочки хрома расширяются, занимая место отсутствующих. Разбухшие оболочки хрома подпираются оболочками алюминия, которые препятствуют их возвращению в исходное положение. Так обеспечивается метастабильное состояние оболочек хрома. За счет эффекта запирания время жизни метастабильных оболочек в рубине увеличивается в сто тысяч раз! Появилась надежда, что почти все атомы хрома успеют принять участие в размножении фотонов. Проблема в том, что к.п. д лазера ограничен концентрацией хрома. Она не должна быть чрезмерной, чтобы кристалл не потерял прозрачность. Поэтому мы не вправе ждать большой мощности от такого лазера. Но здесь дело принципа. Впервые в науке появилась возможность создать монохромный луч не фильтрацией солнечного света, а при помощи квантового механизма вынужденного излучения, предсказанного Эйнштейном.
В качестве источника энергии накачки Мейман использовал мощную импульсную ксеноновую лампу, изготовленную в виде трубки, завитой в спираль. Кристалл рубина в виде цилиндрика размером с карандаш закрепили внутри спирали. Зеркала для фотонов напылили на торцы кристалла. В одном из зеркал оставили окошечко для выходного луча. Лампу обмотали фольгой для лучшего отражения света внутрь. Опыт начался.
После мощнейшей вспышки лампы практически все валентные электроны атомов хрома, поглотив фотоны с длиной волны 694 нм (красный свет), перешли в метастабильное состояние, где были заперты оболочками алюминия на период времени 10 -3с. Но, согласно принципам квантовой теории, как минимум один возбужденный электрон почти сразу (через 10 -8с) должен был просочиться через электронный барьер и вернуться на нижний уровень. При этом атом хрома должен излучить фотон красного цвета, который начнёт лавинообразный процесс генерации излучения. Всё так и случилось. Уже через 10 -4с после момента вспышки все метастабильные электроны вынужденно излучили мириады фотонов и вернулись в исходное состояние. Фотоны, концентрируясь, метались вдоль оси кристалла между зеркалами, пока не сжались в сверхтонкий луч, который вышел через окно на торце рубина и прожёг дырку в мишени. Весь процесс генерации лазерного монохромного луча занял меньше одной миллисекунды. Успех был очевиден. В дальнейшем Мейман организовал коммерческое производство лазеров и стал состоятельным человеком.
Читать дальше
Конец ознакомительного отрывка
Купить книгу