Мы можем слышать звуки, частота которых лежит в диапазоне от 20 до 20000 Гц. Неслышимые звуки делятся на инфразвуки и ультразвуки. Мощность звука лежит в диапазоне от уровня писка комара до уровня рёва космической ракеты на старте. Если звуки, извлечённые при помощи музыкальных инструментов, приятно слушать, они называются музыка. Слабые звуки можно усиливать при помощи при помощи электрических усилителей звуковой частоты. В паспорте усилителя для электрогитары всегда указывают потребляемую мощность и выходную мощность звука. Например, если в паспорте указано 40 Вт и 17 Вт, это значит, что усилитель «заберёт» из сети до 40 Вт электроэнергии, из которых до 17 Вт «выдаст» в виде энергии звуковых волн.
Мы уже говорили, что для переноса энергии при помощи звуковых волн нужна вещественная среда. Частицы вещества колеблются вверх-вниз или вперёд-назад на миллиметры, а энергия переносится на многие километры. Заметим, что вещество занимает ничтожно малый объём Вселенной. К примеру, выше 100 км над землёй начинается безвоздушное пространство. Спутники летают, начиная с высоты 300 км, они поддерживают связь с Землёй при помощи радиоволн. Это значит, что радиоволны способны проходить через безвоздушное пространство. Вселенная буквально заполнена радиоволнами. Значит, существуют волны, для которых вещественная среда особо не нужна. К таким волнам относятся волны электрического поля, или говоря проще, электрические волны.
Симулировать электрические волны легко. Подвесим на штативе два воздушных шарика так, чтобы они едва не касались друг друга. Затем потрем шарики о волосы и отпустим. В результате трения часть электронов с волос перешла на шарики, которые зарядились отрицательно. Еще древние греки знали, что одноимённые заряды отталкиваются. Мы увидим, что шарики разошлись и висят под углом к стойке штатива. Их удерживают встречные электрические поля вокруг шариков. Если один из шариков отклонить, действие его поля ослабнет. Тогда второй шарик приблизится к равновесному положению, т. е. к стойке штатива. Если первый шарик перемещать относительно стойки вперед-назад, второй шарик будет повторять его перемещения. Так вибрация заряженного тела передаётся через колебания электрического поля другому заряженному телу, заставляя его вибрировать. Перенос энергии при помощи колебаний поля и есть волна поля, в данном случае волна электрическая.
Важнейшей энергетической характеристикой волны является её частота. Поскольку источником электрического поля являются легчайшие частицы электроны, которые могут двигаться с огромной скоростью, частота радиоволны может достигать огромной величины. Например, современное телевидение охватывает диапазон частот до 1 ГГц и более. Это большая величина для радиоволны. Другой характеристикой волны является её длина. Это расстояние, на которое энергия переносится за один период волны. Раньше для радиосвязи использовали радиоволны с длиной в сотни метров. В первых радиоприёмниках шкала радиоволн начиналась с одного километра. Метровый диапазон был освоен аналоговым телевидением. Потом изобрели цифровое ТВ, в котором используются более еще короткие волны. То, что для древних греков было игрушкой, в наше время превратилось в мощное средство связи.
Несмотря на очевидные успехи радиотехники, в понимании природы радиоволны до сих пор нет полной ясности. По традиции считается, что в радиоволне колебания электрического поля сопровождаются колебаниями магнитного поля. Правда, при этом делается оговорка, что магнитное поле самостоятельно не существует и энергию не переносит. Значит, в нашем энергетическом подходе магнитное поле особой роли не играет. В аналогичной ситуации мы уже сталкивались с так называемой силой инерции. Эта сила работу тоже не производит. Она появляется в результате того, что выбранная система отсчета является неинерциальной. Возможно, магнитное поле тоже появляется в результате неправильного выбора системы отсчёта.
Скорость радиоволны равна скорости света. Это дало повод считать свет электромагнитной волной с частотой порядка 10 16Гц. В нашем подходе это мнение особой информативностью не обладает, так как магнитное поле энергию не переносит. Но мы не станем отказываться от понятия магнитного поля. Теория магнетизма формально хорошо проработана, её методы просты и надежны. Вспомним, что в § 14 мы использовали неинерциальную систему отсчета. Благодаря этому формальному приёму объём вычислений сократился в шесть раз.
Читать дальше
Конец ознакомительного отрывка
Купить книгу