Схематическое изображение детектора общего назначения, такого как ATLAS или CMS. В центральной части находится внутренний детектор, фиксирующий треки заряженных частиц. Дальше идет электромагнитный калориметр, улавливающий фотоны и электроны; за ним – адронный калориметр, который ловит адроны, и мюонный детектор.
Внутренние детекторы ATLASа и CMSа – сложные многокомпонентные машины со слегка различными функциями. Внутренний детектор в ATLASе, например, состоит из трех различных приборов – пиксельного детектора невероятно высокого разрешения, полупроводникового трекера, изготовленного из кремниевых полосок, и трекера переходного излучения, изготовленного из позолоченной вольфрамовой проволоки, помещенной внутри тонких дрейфовых трубок – и называют «строу» (соломинки). Задача внутреннего детектора – как можно точнее регистрировать траектории вылетающих частиц и восстанавливать местоположение точек, в которых произошло взаимодействие и из которых эти частицы вылетели.
Поперечное сечение детектора, схематически демонстрирующее поведение разных частиц. Внутренний детектор не чувствует нейтральные частицы вроде фотонов и нейтральных адронов, а заряженные частицы оставляют там искривленные следы. Фотоны и электроны захватываются электромагнитным калориметром, а адроны улавливаются адронным калориметром. То же самое происходит с мюонами во внешнем детекторе, а вот нейтрино не удается поймать ни одному детектору, и они беспрепятственно улетают. В детекторе CMS трек мюона закручивается в противоположном направлении, поскольку магнитное поле направлено в противоположную сторону.
Следующие слои – это калориметры, электронные и адронные. «Калориметр» – забавное название для устройства, которое измеряет энергию, ведь слово «калория» ассоциируется с тем, что написано на упаковках пищевых продуктов. Электромагнитный калориметр способен поймать электроны и фотоны, заставив их провзаимодействовать с ядрами и электронами в веществе самого калориметра. Частицы, чувствующие сильное взаимодействие, обычно проходят электромагнитный калориметр насквозь и останавливаются только в адронном калориметре. Этот аппарат состоит из чередующихся слоев тяжелого металла, с которым взаимодействуют адроны, и слоев сцинтилляторов, в которых измеряется количество выделившейся энергии. Измерение энергии частиц – ключевой этап при определении типов частиц; с помощью этих измерений часто удается определить массу частицы, в результате распада которой родились пойманные адроны.
Самые внешние слои детекторов ATLAS и CMS – это мюонные детекторы. Мюоны имеют достаточно большой импульс, чтобы пробиться через калориметры. Его можно точно измерить с помощью гигантских магнитных камер, которые их окружают. Эти исследования важны, поскольку мюоны не создаются в результате сильных взаимодействий (так как они лептоны, а не кварки), и лишь в редких случаях – в результате электромагнитных взаимодействий (из-за того, что они такие тяжелые, проще образоваться электронам). Поэтому мюоны обычно возникают в результате слабых взаимодействий или же какого-то еще неизвестного механизма. Любой вариант интересен, и мюоны играют важную роль в поиске бозона Хиггса.
Теперь мы видим, почему конструкция детекторов ATLAS и CMS имеет структуру матрешки. Внутренние детекторы дают точную информацию о траекториях всех заряженных частиц, образовавшихся при столкновениях. Электроны и фотоны ловятся электромагнитным калориметром, где измеряется их энергия. Частицы, участвующие в сильных взаимодействиях, ждет та же участь, только уже в адронном калориметре. Мюоны беспрепятственно пролетают сквозь калориметры и попадают в мюонный детектор, где подвергаются тщательному изучению. Среди известных нам частиц только нейтрино пролетают незамеченными, и об их существовании мы можем судить только по недостающему импульсу. В целом это – гениальная схема, позволяющая выкачать всю возможную информацию из протонных столкновений на БАКе.
На БАКе банчи протонов сталкиваются 20 миллионов раз в секунду. При каждом пересечении встречных пучков происходят десятки столкновений, так что возникает около миллиарда столкновений в секунду. Каждое столкновение – настоящий фейерверк из множества, до сотни и даже больше, частиц, выстреливающих в детектор. И тонко откалиброванные приборы внутри детекторов собирают точную информацию о том, что каждая из этих частиц делает.
Читать дальше
Конец ознакомительного отрывка
Купить книгу