Поэтому было бы большой неожиданностью, если бы наблюдаемое значение некоторой величины оказалось гораздо меньше, чем вклады отдельных процессов, участвующих в ее образовании. Это означало бы, что большой положительный вклад сложился с большим отрицательным вкладом, и в результате возник крошечный конечный результат. Такое, конечно, можно себе представить, но это не то, что хотелось бы получить. Если измеренный параметр оказывается гораздо меньше, чем мы ожидали, мы объявляем, что существует «проблема тонкой настройки» параметра, и говорим, что теория «неестественная». В конечном счете, конечно, не мы, а природа решит, что естественно, а что – нет. Но если теория оказывается «неестественной», это, возможно, первый намек на то, что нужно подумать над новой теорией.
По большей части параметры Стандартной модели вполне естественные. Есть два явных исключения: значение поля Хиггса в пустом пространстве и плотность энергии пустого пространства, которую иначе называют «энергией вакуума». Оба значения намного меньше, чем это следует из Стандартной модели. Обращаем внимание, что они оба связаны со свойствами пустого пространства, или «вакуума». Это интересное обстоятельство, но оно еще никому не помогло.
Обе проблемы – слишком маленькие поле Хиггса и энергия вакуума – очень похожи. Определение обеих величин можно начать с любого понравившегося вам значения, а затем к нему нужно добавить все расчетные дополнительные вклады от взаимодействий с виртуальными частицами. В обоих случаях в результате учета этих вкладов результат будет все время увеличиваться. В случае поля Хиггса грубая оценка показывает, что этот результат будет в 10 16(десять квадриллионов) раз больше, чем то, что есть на самом деле. Если честно, мы не можем слишком уверенно говорить о том, что «будет», так как у нас нет единой теории всех взаимодействий. Наша оценка исходит из того, что за счет виртуальных частиц поле Хиггса будет увеличиваться, но у него есть физический предел, до которого оно может подняться – так называемый масштаб Планка – энергия, равная примерно 10 18 ГэВ, при которой уже становится важной квантовая гравитация, и само понятие пространство-время утрачивает какой-либо определенный смысл.
Эта гигантская разница между ожидаемым значением поля Хиггса в пустом пространстве и его наблюдаемым значением называется «проблемой иерархии». Энергетический масштаб, характеризующий слабые взаимодействия (значение поля Хиггса – 246 ГэВ), и тот, который характеризует гравитацию (энергия Планка – 10 18 ГэВ), очень сильно различаются (проблема иерархии, о которой мы уже кпоминали). Это уже достаточно странно, но мы должны помнить, что именно квантово-механические взаимодействия с виртуальными частицами стремятся поднять масштаб слабых взаимодействий до масштаба Планка. Почему же они все-таки настолько разные?
Как бы ни была трудна проблема иерархии, проблема энергии вакуума еще хуже. В 1998 году астрономы, изучающие скорости далеких галактик, сделали удивительное открытие: Вселенная не просто расширяется, она расширяется ускоренно! Галактики не только удаляются от нас, они разбегаются все быстрее и быстрее. Существуют различные возможные объяснения этого явления, но есть простое, которое отлично подходит к имеющимся в настоящее время данным: расширяться Вселенную заставляет энергия вакуума, введенная в 1917 году Эйнштейном в виде «космологической постоянной».
Идея Эйнштейна состоит в том, что существует мировая постоянная, которая показывает, какая энергии содержится в определенном объеме совершенно пустого пространства. Если эта величина не равна нулю – а никаких причин ей быть нулевой нет, – эта энергия расталкивает разные части Вселенной, что приводит к космическому ускорению. Открытие этого ускорения привело в 2010 году Сола Перлмуттера, Адама Рисса и Брайана Шмидта к Нобелевской премии.
Мы с Брайаном Шмидтом, будучи аспирантами, сидели в одном офисе. В моей последней книге «Из вечности в сегодня» (From Eternity to Here) я рассказал историю о пари, которое мы с Брайаном заключили еще в те старые добрые времена: он считал, что мы не найдем полную плотность материи во Вселенной в ближайшие двадцать лет, а я утверждал, что найдем. Отчасти благодаря именно его усилиям мы сейчас уверены, что знаем плотность Вселенной, и в 2005 году я забрал свой приз – маленькую бутылку старого портвейна, причем для этого мы устроили забавную церемонию на крыше Куинси Хауса в Гарварде. С тех пор Брайан стал астрономом мирового класса, но остался неисправимым пессимистом – не так давно поспорил со мной о том, что невозможно обнаружить бозон Хиггса с помощью БАКа, и проиграл и это пари. Мы оба за это время подросли, соответственно, выросли и ставки. На сей раз проигравший Брайан должен будет на свои мили, собранные при частых перелетах, оплатить билеты для меня и моей жены Дженнифер в Австралию, куда мы собираемся прилететь к нему в гости.
Читать дальше
Конец ознакомительного отрывка
Купить книгу