Легко понять, почему классическая механика практически всегда остается справедливой, когда мы имеем дело с макроскопическими явлениями. По существу эти явления описываются столь большими значениями физических величин, что квантом действия можно при этом совершенно пренебречь, и его влияние полностью маскируется неизбежным недостатком точности физических измерений. Это легко уяснить на численных примерах и показать, скажем, что для того, чтобы подтвердить неравенство Гейзенберга для шарика весом в одну десятую миллиграмма (чрезвычайно благоприятный случай ввиду необычайной легкости шарика), было бы необходимо, даже если скорость известна с точностью до одного миллиметра в секунду, измерить положение его центра тяжести с точностью, не меньшей чем 10-20 сантиметра! Чтобы еще лучше понять, как достигается соответствие между старой и новой механикой, рассмотрим более подробно один частный случай.
Предположим, что мы изучаем крупномасштабное движение частицы, например движение электрона в магнитном поле. Мы знаем, что такое движение можно точно описать, исходя из представлений классической механики. Как это согласуется с соотношениями неопределенности? Для ответа на этот вопрос прежде всего заметим, что в условиях этого макроскопического эксперимента самые маленькие расстояния, которые мы можем измерять прямым способом, во много раз больше длины волны, соответствующей исследуемой частице. Следовательно, может существовать волновой пакет, размеры которого меньше тех, что мы можем прямо измерить, и который тем не менее будет образован волнами почти одинаковой длины.
Таким образом, точный и хорошо проведенный эксперимент может позволить, не вступая в противоречие с соотношениями Гейзенберга, представить состояние частицы после измерения в виде некоего волнового пакета. Поскольку этот пакет практически локализован в точке и практически для нас монохроматичен, мы можем в пределах точности макроскопического измерения получить строго определенные положение и скорость частицы. Кроме того, фундаментальный результат, полученный на самой заре развития волновой механики, гласит, что группа «КСИ»-волн перемещается со скоростью, которую классическая механика, приписывает соответствующей частице. Таким образом, наш квазиточечный волновой пакет двигается в точности как классическая частица и, так как согласно принципу интерференции реальная частица должна всегда находиться внутри волнового пакета, все происходит так, будто реальная частица подчиняется законам классической механики. Как видно из этого примера, лишь недостаточная точность наших макроскопических измерений маскирует квантовую неопределенность. Итак, оказывается, нет никаких серьезных трудностей в согласовании новой механики со старой. К тому же квантовая физика построена так, что включает классическую физику в свои более широкие рамки. Снова, как во всей истории науки, прогресс идет путем последовательных приближений к истине.
4. Индетерминизм в новой механике
Уравнения классической механики целиком и полностью определяют движение системы, если в начальный момент времени известны положения и состояния движения каждой из ее частей. Таким образом, можно полностью предсказать классическое движение частицы, если известны ее положение и скорость в некоторый начальный момент времени. Эта возможность самым неумолимым образом предсказать будущее механической системы, когда имеются данные о ее состоянии в некоторый момент времени, определяет детерминизм классической механики.
Поразительные успехи, достигнутые этой механикой, особенно в области математической астрономии, привели к тому, что все физики пытались создавать теории, которые бы всегда удовлетворяли условия детерминизма. Макроскопические явления, изучавшиеся ими тогда, были подчинены этому требованию, и вся классическая теоретическая физика покоится на дифференциальных уравнениях в полных или частных произведениях, которые позволяют строго вычислить эволюцию любой произвольной физической системы, исходя из определенных данных о ее начальном состоянии. Даже в тех областях физики, где были введены вычисления вероятностей, всегда предполагали, что элементарные процессы строго детерминированы и что только очень большое число и беспорядочность элементарных процессов, из которых состоят наблюдаемые явления, позволяют обратиться к статистическим методам и понятию вероятности. Более или менее сознательно внутренний детерминизм явлений природы, требующий, чтобы их можно было полностью предсказать, по крайней мере в принципе, стал чем-то вроде научной догмы. Развитие новых квантовых теорий абсолютно изменило эту ситуацию.
Читать дальше