Таким образом, уже отсюда совершенно ясно, какое огромное значение для изучения внутреннего строения атома и структуры уровней играет детальное исследование и классификация этих спектров. В частности, можно сказать, что именно анализ рентгеновских спектров различных элементов позволил неопровержимо доказать справедливость важного принципа насыщения энергетических уровней, значение которого мы уже подчеркивали.
Гипотеза Бора о существовании квантовых энергетических уровней, а равным образом и его общая картина внутреннего строения атомов различных элементов хорошо подтвердились опытами по ударной ионизации. Явление ионизации при помощи удара, или ударной ионизации, состоит в отрыве одного из внутриатомных электронов в результате соударения атома с каким-либо другим телом, скажем, с другим атомом. При этом, чем глубже уровень, на котором находится электрон, тем большую энергию надо затратить для его удаления. Эта энергия носит название энергии ионизации данного атома. Представим себе пучок частиц с некоторой заданной энергией, падающий на газовую мишень. Тогда в результате соударений этих частиц с атомами газа будет происходить ионизация атомов, причем из них будут вырываться только те электроны, энергия ионизации которых меньше энергии падающих частиц, т е. при малой скорости падающих частиц электроны будут вырываться только с верхних уровней. Картина почти не будет меняться при увеличении энергии частиц, но только до тех пор, пока последняя не возрастет настолько, чтобы оказался возможным отрыв электронов, находящихся на следующем, более глубоком уровне. Так с ростом энергии постепенно будут вступать в игру все более и более глубокие уровни, причем картина будет носить ясно выраженный скачкообразный характер. Таким образом, эксперименты с ударной ионизацией позволяют в принципе определить расположение различных энергетических уровней.
Действительно, результаты опытов, поставленных Франком и Герцем, не только подтвердили существование энергетических уровней, но и оказались также в хорошем соответствии с данными о расположении этих уровней в различных атомах, полученными на основании спектроскопических измерений.
Того, что было сказано в этой главе, вполне достаточно, чтобы понять все значение атомной теории Бора. Рождение ее ознаменовало новый важный этап в развитии современной физики. Уже с самого начала теория позволила понять природу атомных спектров и объяснить в общих чертах законы, которым они подчиняются. Дополненная затем общими правилами квантования, она приняла в каком-то смысле законченный вид и оказалась способной объяснить большое число новых явлений атомного мира.
Тем не менее, эта теория все же обладала некоторыми недостатками. Мы не собираемся говорить здесь о тех неудачах, которые постигли ее, например, при попытке Зоммерфельда объяснить наблюдаемую экспериментально тонкую структуру спектров или о противоречии с опытом, к которому после долгих вычислений пришел Крамерс, когда он хотел применить методы старой квантовой теории, чтобы теоретически определить потенциал ионизации нейтрального атома гелия. Хотя эти неудачи и не предвещали ничего хорошего, но речь пойдет не о них. Первоначальные концепции Бора встречают возражения гораздо более общего характера, свидетельствующие о неудовлетворительности старой квантовой теории. Остановимся в нескольких словах на наиболее существенных из этих возражений.
Прежде всего, теория Бора оказалась совершенно неспособной окончательно уточнить природу излучения, возникающего при переходах внутриатомных электронов из одного стационарного состояния в другое. Разумеется, она позволяет определить частоту излучения. Однако для полного описания процесса этого еще недостаточно. Необходимо знать также интенсивность излучения и его поляризацию. Но на эти вопросы теория Бора не дает никакого ответа. И в этом смысле она оказывается гораздо более несовершенной, чем классическая теория излучения. Бор отлично сознавал этот недостаток своей теории и попытался устранить его, предложив в 1916 г. известный принцип соответствия.
Но даже помимо этого у теории Бора есть еще слабые места. В частности, в ней одновременно используются чисто классические понятия и формулы и квантовые. Так, например, вначале внутриатомные электроны рассматриваются как материальные точки (как они понимаются классической механикой), движущиеся под действием кулоновых сил по вполне определенным орбитам, а атом представляется в виде миниатюрной солнечной системы чрезвычайно малых размеров. Затем в эту чисто классическую схему извне вводятся совершенно чуждые ей условия квантования и утверждается, что среди бесконечного многообразия различных траекторий, не противоречащих уравнениям классической динамики, устойчивы и физически реализуются лишь те из них, которые удовлетворяют условиям квантования.
Читать дальше