Однако вряд ли эти факты в достаточной степени исследовались и сопоставлялись до конца XVIII в. и вряд ли кто-либо четко представлял себе в то время, что они станут объектом изучения новой науки, составляющей одну из важнейших областей современной физики. Это стало ясно лишь в конце XVIII и начале XIX в. Интересно отметить, что в то же самое время были открыты явления интерференции и построена волновая теория. Этот замечательный период в истории развития науки, когда возникла волновая оптика и современная теория электричества, был для макроскопической физики тем же, чем были последние 50 лет для атомной физики.
Мы не будем здесь ни следовать в деталях истории развития теории электричества, ни отмечать специально вклады таких ученых, как Вольта, Кулон, Эрстед, Био, Лаплас, Гаусс, Ампер, Фарадей и многих других, живших и работавших в период становления этой новой области науки. Хотя это и было бы очень интересно, но увело бы нас слишком далеко в сторону от задач, которые мы себе поставили. Поэтому ограничимся лишь замечанием, что во второй половине XIX в. законы электрических явлений были уже настолько хорошо известны, что оказалось возможным попытаться перейти к объединению большого числа различных фактов и утверждений и к поискам единой стройной теории. Эту огромную работу проделал Джеймс Клерк Максвелл. Руководствуясь открытиями своих предшественников и своим огромным дарованием, он сумел построить полную теорию электромагнитных явлений, которая носит теперь его имя. Все разнообразие этих явлений, всю совокупность законов, которым они подчиняются, ему удалось свести в одну систему уравнений, которые называют уравнениями Максвелла. Уравнения Максвелла состоят из двух векторных уравнений, эквивалентных шести уравнениям для компонент, и двух скалярных уравнений. Эти уравнения связывают компоненты векторов электрического и магнитного полей и векторов электрической и магнитной индукции между собой и с плотностями электрического заряда и тока. Одно из векторных уравнений выражает закон индукции, открытый Фарадеем. Одно из скалярных уравнений отражает невозможность выделения магнитных зарядов или полюсов одного знака, другое формулирует электростатическую теорему Гаусса. Эти уравнения стали обобщением уже известных законов. Однако второе векторное уравнение содержит существенно новый элемент, внесенный в теорию собственно Максвеллом.
Второе векторное уравнение должно было отразить связь, существующую между магнитным полем и электрическим током, согласно закону Ампера. Согласно этому закону, ротор от вектора напряженности магнитного поля должен быть равен (с точностью до постоянной, зависящей от выбора системы единиц измерений) плотности электрического тока. Но Максвелл заметил, что если определить входящую в это уравнение плотность тока как плотность только тока, связанного с переносом заряда, то это приводит к целому ряду трудностей. Чтобы избежать их, он выдвинул блестящую идею – обобщить выражение для плотности тока, добавив к так называемому току проводимости, обусловленному переносом заряда, слагаемое, пропорциональное скорости изменения во времени вектора электрической индукции. Это слагаемое представляет собой новый вид тока, ток смещения, который в отличие от тока проводимости вовсе не обязательно связан с перемещением электрических зарядов. Так, например, в поляризуемой среде часть тока смещения связана с перемещением электрических зарядов, другая же его часть, отличная от нуля даже в пустоте, если электрическое поле переменно во времени, совершенно не связана с движением зарядов. Благодаря введению токов смещения трудности, о которых мы упоминали, исчезли. Сложный вопрос о замкнутых и незамкнутых токах, занимавший теоретиков того времени, разрешился сам собой, поскольку, если принять во внимание токи смещения, то все эти токи окажутся замкнутыми.
Но самая гениальная идея Максвелла, выдвинутая после написания общих уравнений электромагнитных явлений, состояла в том, что эти уравнения дают возможность рассматривать свет как электромагнитное возмущение. Это в свою очередь позволило объединить две казавшиеся столь различными области физики и рассматривать всю оптику как частный случай электродинамики – один из наиболее замечательных примеров синтеза, который дает нам история развития физики.
Что же помогло Максвеллу выдвинуть эту радикальную идею? Уравнения электродинамики содержат некоторую константу, равную отношению электромагнитной единицы заряда или поля к соответствующей электростатической единице. С помощью несложных преобразований основных уравнений легко показать, что распространение электромагнитного поля в пустоте описывается волновым уравнением, содержащим указанную постоянную в качестве скорости распространения.
Читать дальше