Рис. 19. Координатная система для ультразвукового воздействия на слуховой лабиринт человека.
Для экспериментов на животных также изготавливают координатные системы, соответствующие виду животного и задачам исследования. Очень подходит для экспериментов с ультразвуком лягушка — животное, приспособленное к обитанию в воде. Передачу ультразвуковой энергии лягушке можно осуществлять в воде, что значительно уменьшает потери акустической энергии по сравнению с другими жидкими средами и тем более воздухом. Одна из таких систем схематично изображена на рис. 20. Излучатель неподвижен. Животное располагается в ванночке с отверстием, через которое проходит ультразвук. Ванночку можно передвинуть ближе или дальше по отношению к излучателю, меняя тем самым расположение центра фокальной области. Не будем останавливаться на деталях совмещения центра фокальной области с местом воздействия ультразвуком, так как они различны в зависимости от задач исследования, требований к точности совмещения и оценки результатов.
Рис. 20. Схема экспериментальной установки для воздействия фокусированным ультразвуком на слуховой лабиринт лягушки.
1 — обездвиженная лягушка в воде, 2 — пластина, на которой расположено животное, 3 — перемещающаяся по вертикальной оси ванночка с водой, 4 — кожух фокусирующего излучателя, 5 — фокусирующий излучатель ультразвука, 6 — расположение центра фокальной области излучателя, 7 — звуковой динамик, 8 — вода.
Вернемся к человеку. Если при совмещении фокальной области излучателя с улитковым лабиринтом подавать ультразвук непрерывно, то он не вызовет каких-либо слуховых ощущений. Напомним, что речь идет об ультразвуке частотой в диапазоне 0.4—5 МГц. При действии ультразвука частотой ниже 0.225 МГц слуховое ощущение возникает. Это очень высокий тон, причем его высота остается постоянной с изменением частоты ультразвука. С увеличением частоты от 20 кГц — верхней границы слухового диапазона — до 225 кГц возрастают лишь пороги слухового ощущения. Итак, в нашем случае непрерывно излучаемый ультразвук не вызывает слуховых ощущений. Однако стоит только применить импульсы ультразвука длительностью, например, около 1 мс каждый с разной частотой их следования или промодулировать ультразвук по амплитуде каким-либо сигналом из диапазона слышимости человека, как появится слуховое ощущение в соответствии с частотой следования стимулов (импульсов) или с частотой и характером амплитудной модуляции. Допустим, модуляция производилась синусоидальными сигналами или речью — человек услышит соответственно чистый тон или речь. Если предъявлять отдельные импульсы ультразвука, будут слышаться щелчки.
В экспериментах на лягушках использовали как ультразвуковые, так и звуковые стимулы. Регистрировали электрическую активность, вызванную стимулами в слуховой зоне среднего мозга. Оказалось, что можно подобрать звуковые и ультразвуковые стимулы таким образом, что они при околопороговых интенсивностях вызывали сходные электрические ответы. При увеличении интенсивности ответы на ультразвук менялись по сравнению с ответами на звук. Уменьшался скрытый период, т. е. время от начала предъявления стимула до появления электрического ответного сигнала; круче возрастала амплитуда сигнала, а последующее ее уменьшение становилось более пологим. Особенно отчетливо различия выступали при интенсивности звуковых и ультразвуковых стимулов выше 35—40 дБ над порогом обнаружения ответной реакции.
Различия в характере ответных электрических реакций на звук и ультразвук дали основание предполагать, что при небольших интенсивностях звук и ультразвук активируют преимущественно рецепторный аппарат. С увеличением интенсивности ультразвук начинает активировать проводниковые структуры, в частности волокна слухового нерва. Исследования с применением гистохимических методов окраски слуховых рецепторных клеток и волокон слухового нерва в сочетании с электрофизиологическими данными подтвердили, что при интенсивностях до 35—40 дБ над порогом действие звука и ультразвука сходно. При больших интенсивностях ультразвука рецепторные клетки отвечают признаками утомления, а электрический ответ возникает преимущественно в результате активации ультразвуком волокон слухового нерва. Активирующее действие ультразвука на волокна подтвердилось в экспериментах с разрушением рецепторного аппарата. В этих случаях электрические ответы из слуховых областей среднего мозга регистрировались при интенсивности ультразвука около 40 дБ и выше над порогом ответной реакции функционирующего рецепторного аппарата и были аналогичны уже описанным ответам, отличавшимся от реакции на звук.
Читать дальше