Следующим у нас идёт мезон – частица, которую я изучал на чердаке моего дома в 1969 году. Мезоны устроены гораздо проще, чем барионы. Каждый мезон состоит из кварка и антикварка, соединённых одной струной. Подобно барионам мезоны обладают вращательными и колебательными квантовыми состояниями. Расчёт, который я сделал тогда на чердаке, описывал основной процесс взаимодействия между двумя мезонами-струнами.
При столкновении двух мезонов может произойти несколько различных событий. Поскольку квантовая механика предсказывает только вероятности событий, невозможно заранее предсказать, по какому пути будет разворачиваться история столкновения. Самым вероятным и самым неинтересным вариантом будет прохождение мезонов друг сквозь друга, несмотря на то что при этом и струны, соединяющие кварки и антикварки, тоже пройдут друг сквозь друга. Но существует другая, более интересная возможность: мезоны могут слиться вместе, образовав новый мезон, в котором кварк и антикварк соединены более длинной струной.
Представьте каждую струну в виде группы танцоров, взявшихся за руки, чтобы образовать цепочку. У танцоров, находящихся на конце цепочки, одна рука свободна, а у танцоров в середине цепочки обе руки заняты. На рисунке изображены две цепочки, летящие друг к другу. Единственный способ, которым они могут провзаимодействовать, состоит в том, что танцор на конце одной цепочки возьмёт за свободную руку танцора на конце другой. После этого обе группы танцоров образуют единую цепочку. В этой конфигурации танцоры качаются друг относительно друга в сложном танце, до тех пор пока где-то в середине цепочки один из танцоров не отпустит руку своего соседа. Тогда цепочка снова распадётся на две независимых цепочки, и они продолжат своё движение в новом направлении, удаляясь друг от друга. Более точное, но менее наглядное описание выглядит так: кварк на конце одной струны соединяется с антикварком на конце другой. При этом кварк и антикварк аннигилируют, как и любые другие частицы и античастицы, оставляя после себя одну более длинную струну с оставшимися кварком и антикварком на концах.
Возникающая в результате слияния двух мезонов струна, как правило, оказывается в возбуждённом состоянии, включающем как вращательные, так и колебательные моды. Но спустя некоторое время струна, подобно цепи танцоров, распадается надвое, образуя на свободных концах кварк и антикварк. В итоге мы имеем процесс, в ходе которого две струны соединяются в одну, которая затем снова распадается надвое.
Задача, которую я решил на чердаке, формулировалась следующим образом: предположим, что два мезона (две струны) до столкновения двигались с заданной энергией во встречных направлениях. Какова квантово-механическая вероятность того, что образовавшаяся после столкновения новая пара мезонов будет разлетаться в некотором заданном направлении? Задача выглядит ужасно сложной, и это просто математическое чудо, что она может быть решена.
Математическая задача описания идеального резинового шнура была решена ещё в начале XIX века. Колеблющуюся струну можно рассматривать как совокупность гармонических осцилляторов – по одному для каждого отдельного типа (моды) колебаний. Гармонический осциллятор – одна из немногих физических систем, которые могут быть полностью проанализированы с помощью очень простой математики уровня средней школы.
Добавить квантово-механическое описание, чтобы превратить струну в квантовый объект, тоже не составляет труда. Все, что необходимо помнить, – это что уровни энергии любой квантово-механической колебательной системы обладают дискретными значениями энергии (см. главу 1). Этих простых соображений достаточно, чтобы понять свойства одной колеблющейся струны, но описание двух взаимодействующих струн гораздо сложнее. Для этого мне пришлось разработать собственные правила с нуля, что сделало возможным локализовать сложное описание только для бесконечно малого времени, в течение которого происходит объединение струн. Как только это произойдёт, две струны снова становятся одной, описываемой простой математикой. Чуть позже струна рвётся, и этот процесс снова требует сложного описания, но опять же лишь для короткого промежутка времени. Таким образом, я сумел с большой точностью описать процесс объединения двух струн и последующего распада получившейся струны. Результат своих математических расчётов я сопоставил с уравнением Венециано, и они согласовались с идеальной точностью.
Читать дальше
Конец ознакомительного отрывка
Купить книгу