Некоторые физики утверждают, что химия тоже не блещет красотой. Она полна узкоспециализированных рецептов, которые не отличаются универсальностью. Первые несколько строк периодической таблицы Менделеева выглядят достаточно просто, но по мере продвижения вниз по таблице приходится добавлять всё больше и больше новых правил. Правила, описывающие молекулярные соединения, являются приблизительными и содержат множество исключений. В одних случаях химия правильно предсказывает свойства соединений, в других – нет. Всякий раз, когда физики хотят дискредитировать какую-нибудь теорию за немотивированность или сложность, они сравнивают её с химией или, что ещё хуже, с поваренной книгой химика.
В ответ химики заявляют, что физика скучна и однообразна, а вот химия является дисциплиной, описывающей красоту и разнообразие окружающего мира, ведь прекрасный цветок – это в конечном счёте не что иное, как совокупность химических реакций. И это добавляет химическим реакциям эстетическую ценность. [45]
Многие физики и химики находят красоту в том способе, которым очень простые объекты, такие как атомы, соединяются в сложные макроскопические узоры. Для таких явлений, наблюдаемых только благодаря коллективному поведению большого числа объектов, в данном случае – атомов, существует специальное название: эмерджентность . Эти коллективные явления можно вывести из законов поведения отдельных членов: например, одним из таких эмерджентных явлений, вытекающих из свойств молекулярных соединений, является жизнь. Другим примером эмерджентных явлений является образование снежинок или рост кристаллов. Ещё один пример коллективного поведения атомов, приводящего к способности двигаться без трения, – сверхтекучесть. Это так называемая эмерджентная красота.
Что ж, красота такого типа имеет столько же прав на существование, как и красота элегантных физических законов. Но я говорю о другой красоте. Физики, изучающие элементарные частицы, ищут красоту в основных законах и уравнениях. Большинство из них обладают своего рода квазирелигиозной верой в богов простоты и однозначности. Насколько я могу судить, они считают, что в «самом низу всего» лежит красивая теория, один однозначный, мощный и общепризнанный набор уравнений, описывающих все явления, по крайней мере принципиально – даже если эти уравнения окажется слишком трудно решить. Эти главные уравнения должны быть простыми и симметричными. Проще говоря, простота означает, что уравнения можно записать в рамке такого размера.
Но прежде всего эти уравнения должны однозначно предсказывать Законы Физики, которые были установлены за последние несколько веков, в том числе и Стандартную модель физики элементарных частиц, список элементарных частиц, их массы, константы связи и силы взаимодействия. И не допускать возможности никаких других альтернативных правил.
Миф об однозначности и элегантности, вероятно, унаследован нами от древнегреческих интеллектуалов. Пифагор и Евклид верили в мистическую математическую гармонию Вселенной. Пифагор считал, что мир функционирует согласно математическим принципам, аналогичным тем, на которых построена музыка. Хотя связь между музыкой и физикой может показаться нам наивной и даже глупой, в пифагорейской вере нетрудно увидеть всё ту же любовь к симметрии и простоте, которая так вдохновляет современных физиков.
Евклидова геометрия имеет строгий эстетический вкус. Доказательства просты и элегантны, а количество аксиом минимально. Евклиду не понадобилось ничего, кроме пяти аксиом. Его геометрия обычно считается разделом математики, но древние греки не делали различий между математикой и физикой. Для них евклидова геометрия была теорией, описывающей реальный физический мир. Они могли не только доказывать теоремы, но и измерять свойства реального пространства, и результаты измерений обязательно (по словам древних греков) согласовывались с предсказаниями теорем. Например, если нарисовать треугольник с помощью карандаша и линейки, а затем измерить транспортиром три внутренних угла, то их сумма окажется равна 180 градусам – в полном согласии с одной из теорем. Греки верили, что любой реальный треугольник, построенный в реальном пространстве, обязательно согласуется с теоремой о сумме углов треугольника. Исходя из этого они делали определённые заявления о физическом мире, которые считали не только истинными, но и однозначными. Реальное пространство, как утверждали греки, соответствует аксиомам Евклида, и кроме такого пространства другого быть не может. По крайней мере, они так думали.
Читать дальше
Конец ознакомительного отрывка
Купить книгу