Какая из бесконечностей больше и насколько?
Проблема сравнения бесконечных чисел восходит к работам Георга Кантора, который в конце XIX века задался вопросом: как сравнить два множества, каждое из которых содержит бесконечное количество элементов? Для начала разберёмся, как мы сравниваем обычные числа. Представим, что у нас есть куча яблок и куча апельсинов. Очевидный ответ состоит в том, что нужно просто взять и пересчитать количество фруктов в каждой куче, но поскольку мы хотим знать всего лишь, какая куча больше, мы можем воспользоваться более простым способом, который даже не требует от нас умения считать. Выложим яблоки в одну линию, затем выложим рядом с ними апельсины так, чтобы рядом с каждым яблоком лежал апельсин. Если какие-то яблоки остались лишними, значит, яблок больше, чем апельсинов. Если остались лишние апельсины, значит, апельсинов больше, чем яблок. Если каждому яблоку соответствует ровно один апельсин, значит, количества яблок и апельсинов одинаковы.
Кантор утверждал, что то же самое можно проделать и с бесконечными (он назвал их трансфинитными) множествами. Возьмём для примера множество чётных и множество нечётных натуральных чисел. Каждое из них содержит бесконечное количество элементов, но какое из этих бесконечных чисел больше? Запишем элементы этих множеств один под другим и посмотрим, сумеем ли мы расположить их так, чтобы каждому чётному числу соответствовало одно нечётное. Математики называют это взаимно однозначным соответствием .
Обратите внимание, что эти два списка в конечном итоге должны содержать все чётные и все нечётные числа. Кроме того, они в точности совпадут поэлементно, на основании чего Кантор пришёл к выводу, что количество чётных чисел равно количеству нечётных, несмотря на то что оба множества бесконечны.
А что можно сказать про общее количество натуральных чисел? На первый взгляд кажется, что общее количество натуральных чисел вдвое больше, чем количество чётных. Но Кантор категорически не согласился с таким выводом. Множество чётных чисел может быть поставлено во взаимно однозначное соответствие с множеством всех натуральных чисел.
Согласно математической теории бесконечных чисел, которую построил Кантор, количество чётных чисел является точно таким же, как и количество всех натуральных чисел! Более того, множество чисел, кратных 10, – 10, 20, 30, 40 и т. д. – это бесконечное множество точно такого же размера, как и множество натуральных чисел. Натуральные числа, чётные или нечётные числа, числа, которые делятся на десять, – это всё примеры того, что математики называют бесконечными счётными множествами, [112]и все они имеют один и тот же размер.
Давайте проведём с бесконечными числами мысленный эксперимент. Представьте себе бесконечный мешок, в котором лежат все натуральные числа, записанные на клочках бумаги. Сначала тщательно потрясём мешок, чтобы все бумажки как следует перемешались. Теперь засунем в него руку и вытащим одну бумажку. Какова вероятность того, что записанное на бумажке число будет чётным?
Напрашивающийся ответ: 50 процентов. Поскольку половина чисел в мешке чётные, то и вероятность вытащить чётное число должна быть равна одной второй. Но мы не можем проделать такой эксперимент в реальном мире, потому что никто не может сделать бесконечный мешок для натуральных чисел. Для проверки теории мы можем прибегнуть к небольшой хитрости и использовать конечный мешок, содержащий, скажем, первую тысячу натуральных чисел. Если мы повторим эксперимент много раз, то обнаружим, что вероятность вытянуть чётное число действительно близка к одной второй. Затем мы можем провести этот же эксперимент с мешком, в котором находятся первые десять тысяч натуральных чисел. И опять мы обнаружим, что вероятность вытащить чётное число равна одной второй. Проводя эксперимент с первыми 100 000 натуральных чисел, с первым миллионом натуральных чисел, с первым миллиардом и т. д., мы каждый раз будем получать вероятность, равную одной второй. Разумно экстраполировать результат нашего эксперимента на бесконечное количество натуральных чисел и предположить, что вероятность по-прежнему останется равной одной второй.
Читать дальше
Конец ознакомительного отрывка
Купить книгу