Квантование и индукция производят бесконечно большое, но фиксированное и конечное количество зёрен-потенциалов в единицу времени ( потока) через замкнутую сферическую поверхность, таким образом, что на любом сколь угодно удалённом от источника расстоянии в замкнутом сферическом слое с толщиной зерна находится первичный индуктированный заряд (это шестоесвойство) в точности равный заряду источника, т.е. в пространстве с удалением размывается «контрастность» первичного образа. Это реализуется следующим образом. Конкретное первичное количествозёрен, плотно со смежным контактом расположенных на первичной замкнутой поверхности источника, после индукции и с удалением от источника центрально по радиусам равномерно распределяется в следующем единичном слое на поверхности сферы увеличивающегося радиуса R площадью 4πR 2 с уменьшающейся поверхностной плотностью. Таким образом, с ростом расстояния R уменьшается средняя поверхностная плотность заряженных зёрен-потенциалов, размещенных в сферическом слое – поле ослабляется, средний суммарный поверхностный потенциал сферического слоя уменьшается. Отсюда и следует зависимость интегральной силы взаимодействия, убывающей с квадратом расстояния R – реализуются известные из практики законы [15] Законы Ньютона, Кулона и другие.
. Проницаемость этих зерен различна для разных источников ( седьмоесвойство) и практически известна, как для вакуума, так и для конденсированных веществ. Самой высокой проницаемостью обладают зёрна гравитационных полей, а проницаемость зёрен электростатических полей можно сводить к нулю с помощью металлических заземлённых экранов, тем самым создавать экранированиевнешнего поля электрически заряженного стационарного источника.
Всё изложенное доказывает, что процесс индукциифизических полей стационарных источников – это перенос самой слабой формы материи, потенциалов-зёрен со скоростью, которая много больше скорости света.
Структура проквантованного зерна образована из ядра и оболочки – это восьмоесвойство. Ядро-потенциал, собственно, и представляет собой соответствующую долю величины первичного поверхностного потенциала заряда источника, а оболочка формируется из невещественногопространства или потенциала заряда пространства, окружающего в данный момент источник. Тогда структуру поля, окружающего такой источник, можно представить в виде чередующихся, пульсирующих и непрерывно обновляемых с соответствующей скоростью сферических слоёв, с убывающей величиной усреднённых по поверхности потенциалов – эквипотенциальных поверхностей, отделённых друг от друга слоями невещественного или другого окружающего источник пространства. Пространство, образованное по такому механизму с помощью зёрен-потенциалов, проявляет в больших макрообъёмах все известные интегральные свойства ( девятоесвойство) трёхмерного плоского пространства.
1.2 Микропространства-поля
Электрический и массовый заряды электрона [16] Теорема Гаусса для электродинамики.
, протона, ядер и атомов химических элементов и т.д. формируют свои внешниестационарные поля по выше изложенному механизму сразу же после того, как их внешние волноводы стали замкнутыми и стабильными. При этом поля различных монополейот одного источника связаны друг с другом только через общий центр индукции [17] Центром индукции электрического заряда электрона является замкнутый волновод зерен электропотенциалов, охраняемый протекторным магнитным полем. Центром индукции его массы (гравитационного монополя) является виртуальный центр, вокруг которого пульсирует вращаясь переменный по величине минимально возможный магнитный монополь.
и на периферии не влияют друг на друга – принцип суперпозиции.
1.3 Макропространства-поля
Кластеры различных регулярно повторяющихся атомов или молекул, образуют одно из четырех агрегатных состояний вещества – твердое, жидкое, газообразное или состояние плазмы. Внешниепространства, над такими кластерами назовем макропространствами-полямипо сравнению с элементарными микропространствами-поляминад ядрами, атомами и электронами с их мультиполями. К ним относятся внутренниеи внешниеполя кластеров вещества, планет, звёзд и галактик.
Читать дальше