«Берут и сталкивают частицы, при этом они разлетаются, может рождаться что-то новое. Этот способ прекрасно работает, если вы хотите узнать, например, какая энергия сидит вот в этих кварках. Именно в кварках, потому что они несут основную часть энергии. Но, к сожалению, это не помогает узнать про структуру облака глюонов. Ведь это не просто какая-то плотность глюонов – это новая структура, которая как будто сама сконденсировалась и возникла».
По этому поводу есть одно очень серьёзное замечание – ни в ЦЕРНе, ни в США, ни в РФ, ни в Японии и даже в Палате мер и эталонов в Париже пока ещё не дано вообще определение субстанции энергии в САП, тем более в математических кварках.
Согласно САП кварковая модель строения адронов выглядит очень « просто ». Берем кварки, комбинируем их так, чтобы их суммарный цветовой заряд – характеристика, обеспечивающая сильное взаимодействие между кварками, – скомпенсировался, и тогда должен получиться вполне жизнеспособный адрон. Минимальными для компенсации цвета являются комбинации из трех кварков или кварк-антикварковые пары. Теоретически можно соорудить и более сложные бесцветные комбинации, например шестикварковые, пентакварки (четыре кварка и один антикварк), тетракварки (два кварка и два антикварка) и так далее (фото).
Фото.Кварковое устройство пи-мезона, протона и предполагаемый кварковый состав частицы Z c (3900) – одного из кандидатов в тетракварки. Фото из статьи E. Swanson, 2013. New Particle Hints at Four-Quark Matter
Такие адроны, не вписывающиеся в минимальную схему, называются экзотическими . С точки зрения наивной кварковой модели все эти комбинации тоже имеют право на существование. Проблема в том, что в эксперименте их нет – а точнее, не было на протяжении очень долгого времени. Если насильно взять и соединить вместе шесть кварков (например, комбинацию uuuudd ) с правильными цветами, то они распределятся по двум протонам, а не образуют один большой адрон. Если поместить вместе два кварка и два антикварка, то они просто сформируют два мезона, которые разлетятся друг от друга. Почему природа ограничивается только минимальными наборами кварков и настолько «не любит» многокварковые состояния – одна из главных загадок этого раздела физики. Тот факт, что Z (4430) распадается на ψ» и π —, означает, что это заряженная частица. Тот факт, что он распадается очень быстро, означает, что распад идет за счет сильного взаимодействия, а оно не меняет тип кварков. Поэтому если в этом процессе следить за отдельными кварками, она однозначно говорит о том, что Z (4430) не вписывается в кварк-антикварковую схему. Исследования сечений взаимодействий пучков электронов области энергий E ~ 9 ГэВ привели к открытию нового семейства частиц, имеющих в своем составе опять новый b-кварк. В 1977 году были открыты нейтральные Y-мезоны (ипсилон-мезоны) с массами в диапазоне 9.5 – 11 ГэВ – Y (9460), Y (10580), Y (11020). Несмотря на большую массу Y (9460) имел малую ширину распада Г~53 кэВ, т.е. наблюдалась ситуация аналогичная с J/ψ-мезоном. Y-мезоны являются связанными состояниями кварков b и обладают скрытой красотой (квантовоe число b (beauty, bottomness)). Массу b-кварка можно оценить как половину массы Y (9460) т.е. 4700 МэВ, b-Кварк является тяжелым аналогом d и s кварков. b-Кварк порождает новое семейство адронов, имеющих в своем составе этот кварк или антикварк. KEKB— ускоритель, представляющий собой несимметричный электрон-позитронный коллайдер. Энергия пучка электронов 8 ГэВ, позитронов – 3.5 ГэВ, что эквивалентно энергии сталкивающихся пучков в системе центра масс 10.58 ГэВ. Эта энергия соответствует энергии образования Y (4S) -ипсилон мезона. Ускорение электронов и позитронов происходит в одном туннеле длиной 3016 метров. Ускоритель KEKB имеет рекордную светимость для электрон-позитронных коллайдеров L = 2.11·10 34 см —2с —1, что позволяет получать в большом количестве мезоны, имеющие в своём составе b-кварки. На ускорителе KEKB получено большое количество стандартных мезонов, состоящих из q. Однако наряду с этим наблюдалось образование около 10 различных экзотических мезонов, состоящих из двух кварк-антикварковых пар. В частности наблюдались нейтральные состояния X (3872) и Y (4260), имеющие кварковый состав (cu), и заряженное состояние Z (4430), имеющее кварковый состав (cu). В 2011 г. в KEKB были открыты новые экзотические мезоны, названные Z b. Z b-мезоны имеют в своем составе b-кварки и являются заряженными частицами. Поэтому согласно утверждению авторов в их состав помимо b-кварков должна входить ещё одна кварк-антикварковая пара. Состояния были названы Z b (10610) и Z b (10650) в соответствии с их массами. В результате e +e – аннигиляции образуются b экзотический мезон Z b и π – мезон. Z b-мезон затем распадается на π +-мезон и Y-мезон. Y-мезон детектируется по его каналу распада на μ +μ – пару. Полученные четырехкварковые состояния мезонов представляют несомненный интерес. Однако в настоящее время существование экзотических четырехкварковых состояний мезонов достоверно не установлено и нуждается в подтверждении в других экспериментах.Существует и два типа W -бозонов – с электрическим зарядом +1 и —1 (в единицах элементарного заряда); W + является античастицей для W —. Z -бозон (или Z 0) электрически нейтрален и является античастицей сам для себя. Все три частицы очень короткоживущие, со средним временем жизни около 3⋅10 —25 секунд. Эти бозоны – тяжеловесы среди элементарных частиц – с массой в 80,4 и 91,2 ГэВ, соответственно. W ±– и Z 0-частицы почти в 100 раз тяжелее протона и близки к массе атомов рубидия и технеция соответственно. Масса этих бозонов очень важна для понимания слабого взаимодействия, поскольку ограничивает радиус действия слабого взаимодействия. Электромагнитные силы, напротив, имеют бесконечный радиус действия, потому что их бозон-переносчик (фотон) не имеет массы. Все три типа бозонов имеют спин 1. Испускание W +– или W —-бозона может либо повысить, либо понизить электрический заряд испускающей частицы на 1 единицу и изменить спин на 1 единицу. Z 0-бозон не может менять ни электрический заряд, ни любой другой заряд – только спин и импульс. Тот факт, что W – и Z -бозоны имеют массу, в то время как фотон массы не имеет, был главным препятствием для развития теории электрослабого взаимодействия.
Читать дальше