Для исследований конденсированного состояния вещества с помощью мюонов и мезонов построены мезонные фабрики-ускорители для получения пучков высокой интенсивности.
Свойства мюонов достаточно полно изучены, а в особенности при исследованиях явлений мюонного катализа 180 180 Холодный ядерный синтез часть 1. https://www.youtube.com/watch?v=R2j8dLcvrog
, т. е. холодного синтеза ядер изотопов водорода при катализном участии отрицательных мюонов с образованием нейтронов и изотопов гелия, и выделением значительной энергии 17,6 Мэв, а за время жизни мюона – 2,5 Гэв. Физическая картина мюонного катализа ядерных реакций – практически значимого физического явления холодного ядерного синтеза – выглядит очень просто и состоит в следующем. Находящийся в водородной среде, содержащей ядра изотопы дейтерия и трития, свободный мюон образует сначала мюонный атом, а затем и мезомолекулярный ион. То есть в этом процессе образуется сначала мезоатомный тритон, а затем мезомолекулярный дейтерий-тритиевый ион. На фиг. 2.13 (слева) ядро трития, соединяясь с мюоном (расположен посередине), превращается в мезоатом, размеры которого в семь раз больше его ядра. Далее взаимодействуют два противоположных электрических заряда мюона и дейтрона (фиг. 2.13, справа). Мезоатом поглощает своим объёмом очень маленькое по сравнению с ним ядро дейтрона. Ядра трития и дейтрона объединяются таким образом, что начинают взаимодействовать их внешние вихроны. Между этими вихронами идёт соответствующая ядерная реакция синтеза, т. е. слияниемагнитного монополя внешней оболочки трития с магнитным монополем внешней оболочки дейтерия (посредством и законами слияния монополей одного знака) с выделением 17,6 Мэв и образованием продуктов реакции в форме альфа-частицы и нейтрона. При этом происходит освобождение мюона и цепочка описанных превращений повторяется до момента распада мюона. Как проверено практикой, число таких актов может доходить до 150 с выделением суммарной энергии около 2500 Мэв. Однако основная проблемаприменения такого процесса связана с источником мюонов. Для создания необходимых мюонов и их рабочих параметров необходимы установкисоизмеримые по энергозатратам с вырабатываемой в этом процессе.
Фиг. 2.13. Схема мюонного катализа
Решение этой проблемы 181 181 Холодный ядерный синтез часть 2. https://www.youtube.com/my_videos?o=U&ar=2
было найдено в последние годы в рамках пионерских работ по холодному ядерному синтезу (LENR). Поэтому и практический интерес к мюонному катализу диктуется лёгкостьюполучения ядерных частицсо структурой мюонов в таком процессе, способных в конденсированных средах (жидкость, металл) на специальных электроразрядных установках производить тепловую и электрическую энергию. И это реально сделать даже на установке 182 182 Работа установки представлена в следующей главе, в разделе «Жидкости».
А. В. Вачаева «Энергонива-2» и реакторе С. В. Адаменко. Именно в условиях работы этих установок рождается достаточный поток в режиме ионизации частиц-структур типа мюонов, входящих в состав ядерных оболочек со структурой мезонов, плазмоидом в протекающем потоке воды (конвертор) или в кристаллической решётке меди анода Адаменко. При очень низкихэнергозатратах идут ядерные реакции, но не с рождением нейтронов 183 183 Так как в структуру оболочек атомных ядер не входят протоны и нейтроны, они имеют структуру типа нейтральных мезонов, составленных из заряженных и противоположных частиц типа мюонов.
и гелия, а с рождением ядер других стабильных химических элементов в том числе дейтерия и трития в воде.
Этот процесс аналогичен ионизации электронов с атомных оболочек.
Применение реальных объёмных структур мюона, мезонов, ядер трития и дейтерия во многом упрощает понимание физических процессов холодного ядерного синтеза (фотоэффект-кумулятивная имплозия 184 184 Термины «эксплозия и имплозия» ввиду своей простоты понимания смысла и наглядности физических процессов заимствованы из работ В. Шаубергера.
) и деления тяжёлых ядер (зарождение нового ядра внутри большого старого и его вылет-взрыв-эксплозия, деление старого).
Фазовое пространство мюона аналогично структуре электрона, но во много раз меньше его по размерам.
Читать дальше