Итак, главное, при разрядке и движении по окружности со скоростью выше скорости света магнитный монополь в свободном микровихроне индуцирует противодействующий процессу уменьшенияего заряда электрический монополь, а при торможении и уменьшениискорости до полной остановки он превращается в свой покоящийсяаналог – гравитационный монополь.
Фотоядерные реакции лёгкими фотонами. Аналогично с уже рассмотренным процессом фотоатомных реакций с испусканием микрочастиц, происходит процесс Гигантского резонансапри пороговых энергиях фотонов от 10 до 25 Мэв, когда длина волны становится сравнимой с диаметром ядра, что приводит также к излучению различных микрочастиц.
Многофотонная ионизация атомов.
Более конкретно представлены экспериментальные результаты Ю. П. Райзера. В этой работе 112 112 Ю. П. Райзер. Пробой и нагревание газов под действием лазерного луча. УФН, том 87, вып.12, 1965, сентябрь, стр.30—61.
приведён обзор работ, выявлены конкретные и общие закономерности явления многофотонной ионизации атомов. Показано, что в результате интенсивной ионизации газа под действием электромагнитных полей оптических частот фотонов лазера создавалась искра в состояние плазмы. Механизм рождения искры в луче лазера до сих пор достоверно неизвестен. Произведён анализ рождения искры, как индикатора порогов электрической напряжённости, возникающей в фазовых объёмах фотонов СВЧ и оптических с длиной волны 694 нм.
Электроны увеличивают полную энергию в результате многоквантового поглощения, т. е. при одновременном поглощении сразу нескольких фотонов.
Одноквантовый процесс ионизации в случае частот видимого диапазона невозможен. Потенциалы ионизации атомов в несколько раз превышают энергию фотона.
Энергия фотона рубинового лазера равна 1,78 эВ, а ионизационный потенциал аргона равен 15,8 эВ, т. е. для развития электронной лавины, переходящей в плазму искры требуется n=9 фотонов.
Обычно многофотонные процессы маловероятны, но скорость их резко повышается при увеличении плотности потока фотонов в луче лазера, что и наблюдается в эксперименте. Длина волны излучения рубинового лазера равна 694 нм, который производит световые импульсы длительностью около 3 мс, обеспечивая плотность энергии 20 – 40 Дж/см 2. Частота следования импульсов рубинового лазера составляет обычно 1 Гц. Ионизация при данных условиях происходит, если интенсивность излучения превышает некоторую весьма резко выраженную пороговую величину. Как показали опыты, для пробоя газов нужны очень высокие интенсивности. Если, как это часто делают, характеризовать интенсивность излучения напряженностью электрического поля в световой волне, то пороговые поля имеют порядок 10 6 – 10 7 В/см (в зависимости от рода и давления газа).
Многофотонная ионизация атомных ядер ИК и СВЧ-фотонами.
Экспериментальные достоверные результаты, проведённые в реакторах М. И. Солина, А. В. Вачаева, С. В. Адаменко, Л. И. Уруцкоева, К. Шоулдерса, А. Ф. Кладов, а также в более 3000 работ по всему миру, включая реактор E-CAT А. Росси и начиная с работ Керврана в начале прошлого века, позволяют сделать Заключение о том, низкоэнергетические ядерные реакции синтеза (LENR) атомных ядер идут с помощью многофотонной ионизации атомов и последующей дезинтеграции ядер с участием магнитных монополей микровихронов новых «тяжёлых» фотонов по механизмам, изложенных в соответствующих разделах книги – 2.2.1, 2.2.2, 2.4, 2.6, а также 3.3, 3.4 и 3.5.
Фотоядерные реакции резонансно-« тяжёлыми» фотонами. Рассмотренные выше фотоны, полученные при излучении возбуждённых атомов или ядер, назовём «лёгкими» фотонами, только таким фотонам свойственно определение их энергии через произведение частоты и постоянной Планка. К их числу следует отнести и лазерное излучение даже высоких плотностей потока фотонов интенсивного луча лазера, а также гамма – излучение до 1,5 Гэв, полученное при обратном комптоновском рассеянии фотонов с энергией 2—2,5 кэв на электронных пучках с энергией до 6 Гэв. Однако в природе Вселенной встречаются такие разовые процессы, например, электрические разряды атмосферных молний, при которых синфазно за очень короткий промежуток времени порядка 10 —12 секунды и в очень малом локализованном объёме в импульсно- переменном электрическом поле больших токов и напряжений рождаются интенсивные потоки новые « тяжёлых» фотонов по многофотонным механизмам слияния магнитных монополей с максимально возможной плотностью упаковки зёрен-потенциалов как на самих спиралях, формирующих сферу этого заряда, так и названных спиралей, вплотную примыкающих друг к другу (фиг. 2.5). Назовём такие электромагнитные фотоны « тяжёлыми», а источники производства таких фотонов, т.е. « тяжёлых» магнитных монополей, выделим в отдельный класс и будем их рассматривать отдельно в следующей главе 3 этой книги. Отсюда следуют и новые механизмы взаимодействия: – с помощью слияния вращающихся на волноводах магнитных монополей одного знака, порождающих « тяжёлые» фотоны, – с помощью интерференции зёрен- потенциалов волноводов, приводящих к их усилению-слиянию одного знака или взаимному уничтожению противоположных знаков в зоне холодной безмассовой плазмы, – с помощью переноса-проникновения заряда энергии магнитного монополя в глубину материи вещества путём имплозии по волноводу даже в атомное ядро. Резонансно-« тяжёлый» монополь вихрона СВЧ или ИК диапазона (в его фазовом объёме находится очень большое количество атомов), проходя через кластер вещества, также производит волноводы и способен ионизировать холодной безмассовой плазмой не только электроны внешних и внутренних оболочек атомов, дополнительно возбуждая их, но и таким каскадным механизмом запустить механизмы ионизации частиц внешних оболочек атомных ядер.
Читать дальше