Boxodir Xoshimovich - All sciences. №6, 2022. International Scientific Journal

Здесь есть возможность читать онлайн «Boxodir Xoshimovich - All sciences. №6, 2022. International Scientific Journal» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Физика, Прочая околокомпьтерная литература, Математика, Технические науки, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

All sciences. №6, 2022. International Scientific Journal: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «All sciences. №6, 2022. International Scientific Journal»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The international scientific journal «All Sciences», created at OOO «Electron Laboratory» and the Scientific School «Electron», is a scientific publication that publishes the latest scientific results in various fields of science and technology, also representing a collection of publications on the above topics to colleagues of authors and reviewed by the editorial board on the platform «Ridero» monthly.

All sciences. №6, 2022. International Scientific Journal — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «All sciences. №6, 2022. International Scientific Journal», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Angular dependence J x (β) in the form of curve 2, which agrees well with (7) at K 15= (2—4) ·10 —9A·cm· (W) -1 (λ=460nm).

Fig 2 Spectral dependence of J z 1 J x 2 and Ll 0a 3 While the - фото 34

Fig. 2. Spectral dependence of J z (1), J x (2) and L=l 0a* (3).

While the spectral dependence measured earlier in is monotonic, the spectral dependence of Jx detects a sharp maximum near L 1. Thus, the decline of J x in the long-wave region, where L <<1, is due to POFT. The decline of J x in the short wave region, where L> 1, is interesting.Since the AF effect is not related to the lifetime of nonequilibrium carriers, it is possible that this short-wave decline of Jx is due to a decrease in K 15 and, consequently, mobility in the direction [100].

2. SPATIALLY OSCILLATING PHOTOVOLTAIC CURRENT IN A FERROELECTRIC α-HgS

The paper considers photovoltaic effects in optically active α-HgS crystals. Some experimental and physical bases of the photovoltaic effect in active crystals are discussed.

Mercury sulphide HgS exists in two modifications: the black modification – metacinnabarite (β-HgS) – crystallizes in a cubic system (point group 3m), the red modification—cinnabarite or cinnabar (α-HQs) – crystallizes in a trigonal system (point group 32).

Red cinnabar crystals with a particularly large specific rotation along the optical axis for the red rays transmitted by them r= 2350/mm were studied in this work. Α – HgS crystals grown by the hydrothermal method in the Laboratory of Hydrothermal Synthesis at the Institute of Crystallography of the Russian Academy of Sciences were studied. The starting materials for the manufacture of cinnabarite were pure mercury in sulfur. Electrical, electro-optical properties of α-HgS crystals and photoelectric properties of crystals were studied in [5,6].

It is shown that the optical activity of the α-HgS crystal has a stronger effect on the angular distribution of the photovoltaic current measured in linearly polarized light.

Fig. 3. shows the orientation dependence of the photovoltaic current Jx (β) in α-HgS. In accordance with (1) and the symmetry of the point group 32, the expression for Jx (β) when illuminated in the direction of the y axis has the form

where is the angle between the plane of polarization of light and the xaxis - фото 35

where is the angle between the plane of polarization of light and the x—axis.

Comparison of the experimental angular dependence of J x (β) with (2) gives

K 11= (1—2) *10 —9A* cm * (W) -1 (T=133 Κ, λ=500nm). The coincidence of the experimental angular dependence of J x (β) with (2) shows that in the region of strong absorption (λ=500nm, α*>> 100cm-1), the effect of optical activity in the direction of the y axis on the angular distribution of J x (β) is insignificant.The effect of optical activity in the z-direction was found when studying the angular dependence of J x (β) in various spectral regions (Fig.1).The effect of optical activity in the z-direction was found when studying the angular dependence of J x (β) in various spectral regions (Fig.1).The effect of optical activity in z- The angular dependence of J x (β) in various spectral regions was discovered during the study of the angular dependence of J x (β) in various spectral regions (Fig. 1).

In accordance with (1), the angular dependence of J x (β) illumination in the z – direction (the z axis coincides with the axis of symmetry of the third order) has the form.

where β is the angle between the plane of light polarization and the y axis - фото 36

where β is the angle between the plane of light polarization and the y axis.

Figure 2 indicates a good correspondence between the experimental dependence of J x (β) and (3) in the region of strong light absorption (λ= 400nm).The transition from the short-wave to the long-wave region, corresponding to a decrease in α*, changes the nature of the angular dependence of Jx (β) and its amplitude.The transition from the short-wave to the long-wave region, corresponding to a decrease in α*, changes the nature of the angular dependence of Jx (β) and its amplitude.

Fig3 Orientation dependence of the photovoltaic current Jx β in aHgS - фото 37

Fig.3. Orientation dependence of the photovoltaic current Jx (β) in a-HgS (T=133 0K).

Figure 4 shows the spectral-angular diagram of the photovoltaic current Jx. Obviously, its shape is determined by its optical activity in the z-direction, its spectral dispersion, as well as the spectral distribution of the photovoltaic effect in α-HgS.

The optical dependence in the z – direction thus leads to the formation of the structure of the spatial oscillating photovoltaic current Jx. The photovoltaic current oscillates in the z-direction with a period of

Where χ is the optical activity coefficient The angular dependence of J x β - фото 38

Where χ is the optical activity coefficient.

The angular dependence of J x (β) coincides with (3) only under the condition of strong light absorption

where α is the light absorption coefficient Fig 4 Spectral angular - фото 39

where α* is the light absorption coefficient.

Fig 4 Spectral angular diagram of photovoltaic current in aHgS T133 0K - фото 40

Fig. 4. Spectral – angular diagram of photovoltaic current in a-HgS (T=133 0K). The direction of light propagation is indicated in the upper part of the figure.

Note: The Board of Authors thanks V. A. Kuznetsov for providing the crystals and V. M. Fridkin for the discussion.

Literature

1. Glass A.M.Van der Liebe D. Herren T.J. High- voltage Bulk Photovoltaic effect and the Photorefractive process in Limbo. //J. Appl. Phys. Lett. 1974. N4 (25) p.233-236.

2.Fridkin V.M., Photosegnetoelectrics. M., Nauka, 1979, pp.186-216.

3.Belinicher V. I. Studies of photovoltaic effects in crystals. Diss. for the job application. Doctor of Physical and Mathematical Sciences. Novosibirsk. 1982. 350 P.

4. Sturman B. I., Fridkin V. M. Photovoltaic effects in media without an inversion center. -M., Nauka.1992. -p-208.

5. Efremova E. P., Kuznetsov V. A., Kotelnikov A. R. Crystallization of cinnabar in hydrosulfide solutions. // J. Crystallography. 1976. vol.21. v.3. pp.583—586.

6. Donetskikh V. I., Sobolev V. V. Reflection spectra of trigonal HgS. // J. Optics and spectroscopy. 1977. vol.42. v.2. pp.401—403.

7.Fridkin V. M. Volumetric photovoltaic effect in crystals without a center of symmetry. // Crystallography. 2001. Vol. 46, N 4. pp. 722—726.

РОЛЬ РЕЗОНАНСНЫХ ЯДЕРНЫХ РЕАКЦИЙ В СОВРЕМЕННОЙ ЭНЕРГЕТИКЕ. THE ROLE OF RESONANT NUCLEAR REACTIONS IN MODERN ENERGY

Жалолов Ботирали Рустамович

Генеральный директор «Clipper Energy» LLC и «Clipper Associates» Corp

«Clipper Energy» LLC, «Clipper Associates» Corp., Malaysia

Каримов Боходир Хошимович

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «All sciences. №6, 2022. International Scientific Journal»

Представляем Вашему вниманию похожие книги на «All sciences. №6, 2022. International Scientific Journal» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «All sciences. №6, 2022. International Scientific Journal»

Обсуждение, отзывы о книге «All sciences. №6, 2022. International Scientific Journal» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x