Boxodir Xoshimovich - All sciences. №6, 2022. International Scientific Journal

Здесь есть возможность читать онлайн «Boxodir Xoshimovich - All sciences. №6, 2022. International Scientific Journal» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Физика, Прочая околокомпьтерная литература, Математика, Технические науки, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

All sciences. №6, 2022. International Scientific Journal: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «All sciences. №6, 2022. International Scientific Journal»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The international scientific journal «All Sciences», created at OOO «Electron Laboratory» and the Scientific School «Electron», is a scientific publication that publishes the latest scientific results in various fields of science and technology, also representing a collection of publications on the above topics to colleagues of authors and reviewed by the editorial board on the platform «Ridero» monthly.

All sciences. №6, 2022. International Scientific Journal — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «All sciences. №6, 2022. International Scientific Journal», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
From this it is possible to obtain a secondary additional vector which most - фото 7 From this it is possible to obtain a secondary additional vector which most - фото 8 From this it is possible to obtain a secondary additional vector which most - фото 9

From this, it is possible to obtain a secondary additional vector, which most often prevails and makes it move under the pressure of the water itself, and the vector of the inflow velocity into the reservoir itself is most often extinguished. But when the situation is with conventional small hydropower plants, the situation is different here, since the braking capacity of the available small volume in the «dam» is not so high and is determined by the coefficient of friction of water on water, so to speak. That is, each segment, the reduction occurs precisely by the specified energy coefficient (9).

This velocity vector is summed with the resulting velocity vector due to - фото 10

This velocity vector is summed with the resulting velocity vector due to pressure (8) at right angles forming the resulting vector (10).

The resulting output vector will logically be larger than the initial velocity - фото 11

The resulting output vector will logically be larger than the initial velocity vector (11), so it can be concluded that the use of dams in the design of small hydropower plants is quite appropriate technology.

That is no matter how small the height of the dam and its difference between - фото 12

That is, no matter how small the height of the dam and its difference between the outlet of the flow and the water level, the effect, although insignificant, will be provided. It is also interesting here to determine the dependence of the initial velocity itself and the resulting vector (12).

This dependence was deduced because even the initial velocity itself is not - фото 13

This dependence was deduced because even the initial velocity itself is not quite simple and due to the fact that the lower cavity of the ravine for the "reservoir" should be made in the form of a slope. Along with a decrease in coefficient depending on the length of this path according to (9), the initial velocity will increase, since to the initial velocity before entering the "reservoir", at which the flow had potential energy, the kinetic energy into which this potential is converted, that is, the same principle applies (1-5), but at in this case, the angular coefficient acts.

And if, since again this potential downward vector is also at an angle of 90 degrees to the main initial vector, their summed vector will be determined by (13), creating a dependence for the initial velocity on the initial one in the next location.

From where it is true 14 And it is important to take into account that 13 - фото 14

From where it is true (14).

And it is important to take into account that 13 together with 14 acts only - фото 15

And it is important to take into account that (13) together with (14) acts only with a flat slope of the ravine itself, not counting the coefficient of friction, in the case of its calculation, an additional coefficient is included in (14), exactly as in other cases, for implementation, but this coefficient is determined empirically.

In the case of (13) and (14), the previously described (12) changes as (15).

Thus 15 can be considered a fullfledged formula for the action of a straight - фото 16

Thus (15) can be considered a full-fledged formula for the action of a straight slope at the bottom of a ravine. If there are several vectors, it is advisable to use (16), for the simple reason that several vectors will not come from the same direction, because then they can be combined into one. And the vectors may be different due to the presence of additional turns, large irregularities and similar insignificant reasons.

The final touch is only the introduction of the coefficients mentioned earlier - фото 17

The final touch is only the introduction of the coefficients mentioned earlier, namely, the coefficients of a kind of viscosity (18), depending on the coefficient of resistance of movement in the flow (17).

This type 17 of formula 8 was proved and described by the Italian scientist - фото 18 This type 17 of formula 8 was proved and described by the Italian scientist - фото 19

This type (17) of formula (8) was proved and described by the Italian scientist Evangelista Torricelli in 1643, and later it was shown that this formula, as already mentioned, is a consequence of Bernoulli's law.

In conclusion, it can be noted that the development of hydropower has a very progressive character, which pleases. And this development requires more and more new technologies, among which one of the best may be the technology of using a «small reservoir» or an artificial moat with an inclined bottom to increase the efficiency of the entire hydropower plant.

Used literature

1. Evangelista Torricelli. De motu aquarium // Opera Geometrica. – 1644. C. 191. «Aquas violenter erumpentes in ipso eruptionis puncto eundem impetum habere, quem haberet grave aliquod, sive opsius aquae gutta una, si ex suprema eiusdem aquae superficie usque ad orificium eruptions naturaliter cecidisset».

2. Zinoviev V. A. Brief technical reference. Volume 1. – M., Gosizdat, 1949. – p. 362.

3. Savelyev I. V. Course of general physics. Volume 1. Mechanics, molecular physics. – M., Nauka, 1987. – p. 251.

SAVING ELECTRICITY GENERATION AT HYDROELECTRIC POWER PLANTS

Dodobaev Yusubjon Tadjibayevich

Doctor of Economics, Professor

Yuldashev Muminjon Shakirjonovich

Honorary Professor of Ferghana University, Doctor of Economics

Ferghana Polytechnic Institute, Ferghana, Uzbekistan

Аннотация. Мақолада гидроэлектростанцияларнинг самарадорлигини ортириш бўйича фикрлар юритилинган. Сув ресурсларидан комплекс фойдаланиш хақидаги мулоҳазалар кирилиган бўлиб, шу билан биргаликда гидротармоқларда транспорт муаммосини ҳал қилишга катта ҳисса қўшилинган.

Калит сўзлар: ГЭС, самарадорлик, сув ресурслари, электр энергияси, ирригация, дарё транспорти, рекреация.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «All sciences. №6, 2022. International Scientific Journal»

Представляем Вашему вниманию похожие книги на «All sciences. №6, 2022. International Scientific Journal» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «All sciences. №6, 2022. International Scientific Journal»

Обсуждение, отзывы о книге «All sciences. №6, 2022. International Scientific Journal» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x