Вода в реке была очень холодной, но казалось, что утки не чувствуют холода. Дело в том, что у уток сформировался замечательный механизм предотвращения потери тепла через лапы. Здесь нам придется еще раз вспомнить о таком явлении, как теплопередача. Если что-то теплое поместить рядом с чем-то холодным, то более быстрые и энергичные молекулы теплого объекта будут ударяться о молекулы холодного объекта, передавая ему свою энергию. Именно поэтому поток тепла движется от теплых объектов к холодным: малоподвижные молекулы не могут отдавать энергию более быстрым; все должно происходить строго наоборот. Поток энергии от теплых объектов к холодным продолжается до тех пор, пока их температура не уравняется, то есть пока не будет достигнуто состояние равновесия. Реальную проблему для уток представляет кровоток в лапах. Он начинается от сердца, теплового центра утки, где температура крови составляет 40 ℃. Когда эта кровь поступает в конечности, находящиеся под водой, температура которой близка к точке замерзания, возникает большая разница температур. В результате кровь очень быстро отдает свое тепло воде. Затем, когда кровь возвращается в тело утки, теплая утка отдает свое тепло охладившейся крови, вследствие чего ее тело охлаждается. Утки могут несколько ограничивать поток крови к лапам, что препятствует переохлаждению их крови; впрочем, это не решает проблему полностью. Здесь используется гораздо более простой принцип, а именно: чем больше разность температур между двумя соприкасающимися объектами, тем быстрее происходит переток тепла от одного объекта к другому. Этот принцип можно сформулировать иначе: чем ближе между собой температуры двух объектов, тем медленнее происходит переток тепла от одного объекта к другому. Именно это помогает решить проблему переохлаждения уток.
Когда утки продолжали неистово грести, теплая кровь поступала в артерии их лап. Но артерии пролегают рядом с венами, по которым кровь возвращается из лап в тело утки. Кровь в венах имеет пониженную температуру. Молекулы в теплой крови бомбардируют стенки кровеносных сосудов, что приводит в более энергичное движение молекулы в крови с пониженной температурой. Теплая кровь, поступающая в лапы, несколько охлаждается, а кровь, возвращающаяся в тело, немного прогревается. Еще ниже по лапе утки артерии и вены в целом оказываются холоднее, но все же остаются более теплыми, чем вены. Поэтому тепло передается от артерий к венам. При движении крови вниз по лапам утки тепло от ее тела передается в кровь, которая возвращается по венам в тело утки. Но это тепло не передается в самый низ, к лапам. (Речь идет именно о тепле: кровь как таковая поступает и в лапы.) К моменту, когда кровь утки достигнет ее перепончатых лап, ее температура практически сравнивается с температурой воды. Поскольку лапы ненамного теплее воды, они теряют очень мало тепла. А затем, когда кровь течет обратно, к туловищу утки, она прогревается кровью, которая движется от туловища к лапам. Это называется системой теплообмена за счет противотока крови. Такая система – фантастически остроумный способ избежать потерь тепла, опасных для жизни птицы. Позаботившись о том, чтобы тепло не передавалось лапам, организм утки почти полностью исключил возможность потери энергии подобным образом. Следовательно, утки могут спокойно стоять на льду именно потому , что у них всегда холодные лапы. Впрочем, самих уток это не волнует.
В животном мире подобная стратегия развивалась многократно. В хвостах и плавниках дельфинов и черепах похожее расположение кровеносных сосудов. Поэтому в холодной воде они могут поддерживать внутреннюю температуру на требуемом уровне. Похожее расположение кровеносных сосудов и у песцов. Их лапы все время напрямую контактируют со льдом и снегом, однако это не мешает им сохранять тепло в жизненно важных органах. Система очень проста и в то же время чрезвычайно эффективна.
Поскольку у меня и моей спутницы не было столь эффективной системы поддержания тепла в организме, наше пребывание на заснеженном берегу реки было непродолжительным. Понаблюдав еще за несколькими мелкими кратковременными ссорами уток и выразив свое восхищение этими замечательными созданиями (наверняка самыми потешными в мире), мы решили, что самое время подкрепиться фирменными ячменными лепешками в каком-нибудь кафетерии.
⁂
После многих тысяч экспериментов, проведенных несколькими поколениями ученых, можно было с уверенностью заявить, что фиксированное направление потока тепла, наверное, один из фундаментальнейших законов физики. Тепло всегда движется от более теплого объекта к более холодному – и никак иначе. Однако этот фундаментальный закон ничего не говорит о скорости передачи тепла. Когда вы наливаете кипящую воду в керамическую кружку, вы можете держаться за ее ручку как угодно долго, нисколько не опасаясь обжечь пальцы, потому что ручка кружки нагревается очень слабо. Но если в кипящую воду погрузить металлическую ложечку и буквально через несколько секунд ухватиться за нее пальцами, то можно испытать весьма неприятные ощущения. Металл очень хорошо проводит тепло, а керамика – плохо (медленно). Это должно означать, что металлы – более эффективные передатчики колебаний от самых энергичных молекул. Однако и металлы, и керамика состоят из атомов, находящихся в жестко фиксированных позициях и способны вибрировать лишь относительно этих позиций. Чем же объясняется разница в теплопроводности?
Читать дальше
Конец ознакомительного отрывка
Купить книгу