Мое любимое жареное блюдо – кипрский сыр халуми, который я всегда считала неким «вегетарианским ответом» бекону. Все начинается с нагревания масла в глубокой сковородке; тем временем я нарезаю сыр полосками. Масло неслышно прогревается примерно до 180 ℃ – именно неслышно, потому что я ни за что не знала бы, что с ним происходит, если бы от него не исходило тепло. Но как только я опускаю в масло первые полоски сыра, тишина нарушается громким треском и шипением. При соприкосновении с горячим маслом поверхностный слой сыра буквально за какую-то долю секунды прогревается почти до температуры масла. Молекулы воды на поверхности сыра внезапно приобретают изрядную порцию дополнительной энергии – гораздо большую, чем та, которая им нужна, чтобы вырваться из жидкости и улетучиться в воздух. Поэтому они взрывообразно разлетаются в стороны друг от друга, порождая целую серию мини-взрывов газа по мере высвобождения из жидкости. Именно эти пузырьки газа я наблюдаю на поверхности сыра и именно они являются источником шума. Однако эти пузырьки играют важную роль. Пока газообразная вода устремляется из сыра наружу, масло не может проникнуть в сыр. Оно едва касается его поверхности, и этого достаточно лишь для того, чтобы передать энергию нагрева. Вот почему жарка пищи при слишком низкой температуре делает ее жирной и влажной: пузырьки образуются недостаточно быстро, чтобы преградить доступ масла. В ходе приготовления сыра какая-то часть тепла передается в его основную массу, прогревая его. Наружные слои сыра отдают много воды, поскольку они слишком горячие, чтобы вода могла в них оставаться. В результате наружные слои сыра покрываются хрустящей корочкой – они мгновенно высыхают, практически полностью избавляясь от влаги. Потемнение наружных слоев – следствие химических реакций, происходящих при прогревании белков и сахаров, содержащихся в сыре. Но суть поджаривания заключается во внезапном переходе воды из жидкого состояния в газообразное. А жарка пищи обязательно сопровождается громким шипением, его не избежать, если она выполняется правильно.
⁂
Переход из газообразного состояния в жидкое и обратно – обыденное явление нашей жизни. Однако переходы из жидкого состояния в твердое и обратно мы наблюдаем намного реже. У большинства металлов и пластмасс плавление происходит при гораздо более высоких температурах, чем комнатная. У молекул меньшего размера, например кислород, метан и спирт, плавление осуществляется при чрезвычайно низких температурах, требующих применения специализированных морозильных камер. Вода – необычная молекула, поскольку она и плавится, и испаряется при самых привычных для нас температурах. Но картина замерзшей воды чаще всего ассоциируется у нас с Северным и Южным полюсами Земли. Это очень холодные края, которые мы преимущественно соотносим с белым цветом, вечным безмолвием и великими полярными экспедициями XX столетия, которые приводили людей в самые негостеприимные места планеты. Замерзающая вода доставляла этим людям немало проблем. Но иногда подсказывала весьма нестандартные решения.
Переход из газообразного в жидкое состояние представляет собой настолько тесное сближение молекул, что они начинают соприкасаться друг с другом, но сохраняют при этом способность достаточно свободно перемещаться относительно друг друга. Переход из жидкого состояния в твердое происходит в тот момент, когда молекулы фиксируются в определенном положении. Замерзание воды – самый типичный пример такого перехода, однако вода замерзает как никакая другая жидкость. Причем странность ее поведения при замерзании нигде не проявляется настолько зримо, как на Крайнем Севере – в Северном Ледовитом океане.
Если вам доведется побывать в северной части Норвегии, придите на берег и посмотрите в сторону севера на море. В летние месяцы, когда оно свободно ото льдов, солнце, которое светит практически круглосуточно, создает благоприятные условия для роста обширных подвижных «лесов» океанских растений. Получается своеобразный сезонный «шведский стол», который привлекает рыб, китов и тюленей. К концу лета количество солнечного света уменьшается. Температура водной поверхности, которая даже в разгар лета не превышала 6 ℃, начинает снижаться. Молекулы воды, скользящие друг мимо друга, замедляют движение. Соленость морской воды здесь настолько высока, что она остается в жидком состоянии вплоть до – 1,8 ℃, но в одну безоблачную темную ночь начинает образовываться лед. Возможно, под действием ветра небольшой кусочек льда оказался на водной поверхности, и при столкновении с ним самые медленные молекулы воды прилипают к нему. Но они не могут прилипать где попало. Каждая новая молекула остается на том или ином фиксированном месте по отношению к другим молекулам, и на месте груды толкающих друг друга молекул образуется кристалл, в котором хорошо упорядоченные молекулы воды выстраиваются в шестиугольную пространственную кристаллическую решетку. По мере дальнейшего снижения температуры этот ледяной кристалл увеличивается.
Читать дальше
Конец ознакомительного отрывка
Купить книгу