Именно благодаря этому слоистому строению жемчуга невзрачный моллюск, мирно коротающий свои дни в южной части Тихого океана, создает нечто крайне притягательное для самых гламурных личностей в нашем обществе. Эти слои настолько тонкие, что способны обеспечивать идеальное совпадение фаз однотипных световых волн, отражающихся от разных слоев, идеальное наложение этих волн и результирующие яркие цветовые эффекты. Под определенными углами волны отраженного света усиливают сами себя, в результате чего мы наблюдаем мерцания красного и зеленого цветов на яркой белой поверхности. Под другими углами можно наблюдать мерцание синего цвета или отсутствие какого-либо цвета, кроме белого. Если жемчужину поворачивать туда-сюда в лучах солнечного света, то мы увидим сверкания, возникающие в результате сложения волн той или иной длины, – это явление называется переливчатостью и производит сильное эстетическое впечатление, за что высоко ценится людьми, но, к сожалению, оно очень редко встречается в природе. Обусловлено оно тем, что жемчужины порождают иррегулярную картину световых волн, скользя взглядом вдоль ряда жемчужин, вы можете наблюдать разные фрагменты этой картины. Но выглядит это так, будто жемчужины сияют – а людям нравится такое зрелище. В наши дни люди научились добиваться подобного эффекта искусственным путем, тем не менее мы предпочитаем обладать творениями природы.
Жемчуг наглядно демонстрирует, что случается при наложении однотипных волн. Иногда их вершины и впадины совпадают и складываются, порождая более сильную волну, которая движется в определенном направлении. Иногда однотипные волны уничтожают друг друга, что приводит к их полному отсутствию на определенном направлении. Новая картина волн возникает каждый раз, когда на своем пути они не встречают поверхности, от которой могли бы отразиться, или когда есть несколько источников волн (вспомните взаимно перекрывающиеся концентрические круги волн, расходящихся по поверхности пруда, если в него бросить два камешка на относительно небольшом расстоянии друг от друга).
Но в связи с этим возникают некоторые вопросы: что происходит при взаимном перекрытии идентичных волн, имеющих другую природу? Например, радиоволн, используемых для мобильной связи? Мы сплошь и рядом наблюдаем группы людей, стоящих в непосредственной близости друг от друга и разговаривающих по мобильным телефонам с удаленными абонентами, причем у многих из них модели телефонов одинаковые. Сотни и тысячи людей в одном и том же городе используют для мобильной связи одни и те же типы волн. Во время трагедии с «Титаником» радиосвязь между судами была очень плохой, потому что все суда, находившиеся в тот момент в Северной Атлантике, использовали для обмена радиосигналами одну и ту же технологию радиосвязи и один и тот же тип волн. Но в наши дни добрая сотня людей, пребывающих в одном и том же здании, могут одновременно вести переговоры с другими абонентами по одинаковым мобильным телефонам, не создавая при этом помех друг другу. Как же удалось организовать эту какофонию волн, чтобы обеспечить одновременное общение множества людей по мобильной связи?
Представьте, что вы смотрите с высоты на большой оживленный город. Человек, идущий по улице, вынимает из кармана мобильный телефон, набирает номер и прикладывает телефон к уху. Теперь напрягите воображение и представьте, что радиоволны разной длины окрашены в разные цвета. От мобильного телефона этого человека в разные стороны расходятся концентрическими кругами волны зеленого цвета, причем в непосредственной близости от телефона они выглядят очень яркими и мощными, а по мере удаления тускнеют и слабеют. На расстоянии примерно 100 метров расположена базовая станция мобильной связи, которая обнаруживает эти зеленые волны и расшифровывает сообщение, определяя номер абонента, которому звонит этот человек. Затем базовая станция отправляет собственный сигнал обратно на мобильный телефон этого человека; волны обратного сигнала тоже зеленого цвета, однако он несколько отличается от исходного. В этом и заключается первая «маленькая хитрость» современных систем связи. В то время как «Титаник» мог посылать только сигнал, представляющий собой сочетание множества разных длин волн, современная технология с высочайшей точностью выбирает длины волн для передачи и приема сигналов. Длина волны исходного сигнала, передаваемого мобильным телефоном, равнялась 34,067 сантиметра, а длина волны сигнала, переданного базовой станцией обратно на мобильный телефон, – 34,059 сантиметра. Мобильный телефон и базовая станция могут общаться по каналам с длинами волн, различающимися лишь на ничтожную долю процента. Для нас цвета этих двух сигналов практически неразличимы: тот и другой кажутся зелеными. Но, подобно красным и синим чернилам на листе белой бумаги в моем блокноте, эти волны имеют разную длину и не смешиваются друг с другом. Когда человек идет по улице, зеленые волны, исходящие из его телефона, несут в себе определенную картину – сообщение, которое он хочет передать по мобильной связи. Женщина, идущая по той же улице, также разговаривает по телефону, но он использует несколько другую длину волны (разница между ними, опять-таки, составляет ничтожную долю процента). И базовая станция в состоянии отличить эти сигналы. Именно поэтому государство продает полосу частот как их определенный диапазон: если ваш оператор мобильной связи использует этот диапазон, то вы можете улавливать даже самые ничтожные различия между каналами – если, конечно, оборудование мобильной связи способно их сформировать. Итак, глядя на этот район города, мы видим множество ярких точек. Это мобильные телефоны, которые отправляют сигналы. Эти сигналы отражаются от зданий и поглощаются окружающими объектами, но в основном, прежде чем полностью ослабеть, все же достигают базовой станции.
Читать дальше
Конец ознакомительного отрывка
Купить книгу