Но в послевоенную эпоху физики, опираясь на головокружительный успех квантовой электродинамики, обратили свое внимание на следующую насущную проблему – применение квантовой теории к ядерным взаимодействиям. Это была сложная и трудоемкая задача, поскольку начинать приходилось с самого начала; кроме того, для успешного продвижения по неизвестной территории требовались совершенно новые инструменты.
Существует два типа ядерных взаимодействий – сильное и слабое. Поскольку протон положительно заряжен, а положительные заряды отталкиваются друг от друга, ядро атома, по идее, должно было бы разлететься на кусочки. Ядерные взаимодействия – это и есть те силы, которые удерживают компоненты ядра в связанном состоянии и противостоят электростатическому отталкиванию. Без них весь наш мир распался бы, превратившись в облако элементарных частиц [35].
Сильного ядерного взаимодействия достаточно, чтобы ядра многих химических элементов могли оставаться стабильными вечно. Многие из них стабильны с начала времен – по сути, с момента возникновения Вселенной, особенно если число протонов и нейтронов в них сбалансировано. Однако некоторые ядра нестабильны, в частности те, в которых слишком много протонов или нейтронов. Если в ядре слишком много протонов, его может разорвать сила электрического отталкивания. Если в нем слишком много нейтронов, к распаду может привести их нестабильность. Слабого ядерного взаимодействия недостаточно, чтобы удерживать нейтрон в целости вечно, так что со временем он распадается. Так, половина любого набора свободных нейтронов распадется в течение четырнадцати минут. При распаде остается три частицы: протон, электрон и еще одна загадочная новая частица – антинейтрино, о которой мы поговорим позже.
Изучать ядерное взаимодействие чрезвычайно трудно, поскольку атомное ядро примерно в сто тысяч раз меньше самого атома. Чтобы прозондировать внутреннее строение протона, физикам понадобился новый инструмент – ускоритель частиц. Мы уже видели, как много лет назад Эрнест Резерфорд, чтобы открыть атомное ядро, использовал излучение радия, помещенного в свинцовую коробочку. Для проникновения глубже внутрь ядра физикам требовались еще более мощные источники излучения.
В 1929 г. Эрнест Лоуренс изобрел циклотрон – предтечу сегодняшних гигантских ускорителей частиц. Базовый принцип работы циклотрона прост. Магнитное поле заставляет протоны двигаться по кольцевой траектории. На каждом обороте протоны получают небольшой энергетический толчок под действием электрического поля. В конечном итоге после множества оборотов пучок протонов может набрать энергию в несколько миллионов и даже миллиардов электронвольт. (Базовые принципы работы ускорителя частиц настолько просты, что я в старших классах школы самостоятельно построил бетатрон – ускоритель электронов.)
Затем этот пучок направляют в мишень, где составляющие его протоны сталкиваются с другими протонами. Тщательно просеивая громадное количество фрагментов, получающихся при столкновении, ученые смогли идентифицировать новые, неизвестные прежде частицы. (Процесс бомбардировки мишени пучками частиц с тем, чтобы разбить протоны, – весьма неуклюжая и неточная операция. Иногда приводят такое сравнение: это все равно что выбросить пианино в окно, а затем попытаться определить все его свойства, анализируя звук падения. Но, каким бы неуклюжим ни был этот процесс, он один из немногих имеющихся у нас способов зондирования внутренней структуры протона.)
Когда физики в 1950-е гг. впервые сумели столкнуть протоны в ускорителе, они, к собственному удивлению, обнаружили целый зоопарк неожиданных частиц.
У них буквально разбежались глаза. Считалось, что чем глубже вы проникаете в ядро, тем проще – а не сложнее – становится природа. При виде такого богатства частиц квантовый физик мог подумать, что природа и правда злонамеренна.
Обескураженный бесконечным потоком новых частиц, Роберт Оппенгеймер заявил, что Нобелевскую премию по физике следует присудить тому физику, который за год не откроет ни одной новой частицы. Энрико Ферми объявил, что если бы знал, «что будет так много частиц с греческими названиями, то стал бы ботаником, а не физиком» [36].
Исследователи буквально тонули в элементарных частицах. Из-за возникшей путаницы некоторые физики заявляли, что человеческий разум, возможно, недостаточно проницателен, чтобы разобраться в субатомном царстве. В конце концов, говорили они, невозможно научить собаку дифференциальному исчислению, не исключено, что возможностей человеческого разума просто не хватит для понимания происходящего в ядре атома.
Читать дальше
Конец ознакомительного отрывка
Купить книгу