Позже ученые определили, что ядро, в свою очередь, состоит из еще более крохотных элементарных частиц: протонов (несущих положительный заряд) и нейтронов (не имеющих заряда). Казалось, что всю систему Менделеева можно сложить всего из трех элементарных частиц: электрона, протона и нейтрона. Но какому уравнению подчиняются эти частицы?
Квантовая революция
Так зарождалась новая теория, способная объяснить все эти загадочные открытия. Эта теория со временем стала причиной настоящей революции, которая бросила вызов всему, что мы знали до этого момента о Вселенной. Она получила название квантовой механики. Но что такое, вообще, квант и почему он так важен?
Понятие кванта родилось в 1900 г., когда немецкий физик Макс Планк задался простым вопросом: почему нагретые предметы светятся? Когда люди тысячи лет назад впервые обуздали огонь, они заметили, что горячие объекты светятся определенными цветами. Кузнецы столетиями знали, что нагреваемые объекты меняют цвет от красного к желтому и голубому.
Но когда физики попытались рассчитать этот эффект, опираясь на работы Ньютона и Максвелла, они столкнулись с проблемой. Согласно Ньютону, атомы, разогреваясь, начинают быстрее колебаться. А согласно Максвеллу, колеблющиеся заряды, в свою очередь, могут испускать электромагнитное излучение в виде света. Но когда физики рассчитали излучение, испускаемое горячими колеблющимися атомами, результат не оправдал ожиданий. На низких частотах эта модель достаточно хорошо совпадала с экспериментальными данными. Но при увеличении частоты энергия света должна была стремиться к бесконечности, что нелепо. Для физика бесконечность – всего лишь признак того, что уравнения не работают, а сами они не понимают, что происходит.
Тогда Макс Планк предложил невинную гипотезу, согласно которой энергия, вместо того чтобы быть непрерывной, как в теории Ньютона, на самом деле излучается дискретными пакетами, которые он назвал квантами. Отталкиваясь от этой идеи, он обнаружил, что может точно вычислять энергию, излучаемую нагретыми объектами. Чем горячее объект, тем выше частота его излучения, что соответствует разным цветовым оттенкам спектра.
Вот почему нагретые тела меняют цвет от красного к голубому с ростом температуры. Кроме того, это позволяет нам определить температуру Солнца. Услышав в первый раз, что температура на поверхности Солнца составляет около 6000 ºC, вы, возможно, с удивлением подумали: откуда мы это знаем? Никто и никогда не бывал на Солнце с термометром. На самом же деле температура Солнца известна нам благодаря длине волны излучаемого им света.
После этого Планк рассчитал размер этих пакетов световой энергии, или квантов, и выразил его через константу – постоянную Планка h , которая равна 6,6 × 10 –34Дж·с. (Это число Планк нашел, вручную подбирая энергию пакетов и добиваясь идеального совпадения с экспериментальными данными.)
Если мы устремим постоянную Планка к нулю, все уравнения квантовой теории сведутся к уравнениям Ньютона. (Это означает, что странное поведение элементарных частиц, которое часто противоречит здравому смыслу, сводится к знакомым законам движения Ньютона, если присвоить постоянной Планка нулевое значение.) Вот почему мы редко наблюдаем квантовые эффекты в повседневной жизни. Нашим органам чувств окружающий мир представляется вполне ньютоновским, потому что постоянная Планка – очень маленькое число, способное повлиять на Вселенную только на субатомном уровне.
Эти небольшие квантовые эффекты называются квантовыми поправками , и физики иногда тратят целую жизнь на попытки их вычислить. В 1905 г. – в том самом году, когда он сформулировал принципы специальной теории относительности, – Эйнштейн применил квантовую теорию к свету и показал, что свет – это не просто волна, что он ведет себя как отдельный пакет энергии, или частица, которая получила название фотона. Так что свет, очевидно, имеет две ипостаси: это и волна, как предсказывал Максвелл, и частица (фотон), как предсказали Планк и Эйнштейн. Так зарождались новые представления о свете. Свет состоит из фотонов, которые представляют собой кванты, или частицы, но каждый фотон создает вокруг себя поля (электрическое и магнитное). Эти поля, в свою очередь, сформированы подобно волнам и подчиняются уравнениям Максвелла. Таким образом, мы получили красивую взаимосвязь частиц и полей, которые их окружают.
Читать дальше
Конец ознакомительного отрывка
Купить книгу