Не смущает ли это вас? Вообразите, что погасло Солнце. Мы узнаем об этом вовсе не в то же мгновенье, а лишь через восемь с лишним минут, когда до нас дойдут и оборвутся последние испущенные Солнцем электромагнитные волны, или кванты света. Нужно время, чтобы пространство «очистилось» от них: они распространяются с конечной скоростью света — предельной из возможных физических скоростей.
А мгновенное стягивание волнового пакета — мгновенное исчезновение всех вероятностей падения электрона в другие точки пластинки, когда одна возможность уже осуществилась , показывает, что пространство «очищается» от волн вероятности без затраты времени — с бесконечной скоростью. Что ж это значит? Что же это за физический процесс, который происходит быстрее распространения света?
Такой процесс невозможен. Или надо распрощаться с теорией относительности.
Так, может быть, на стягивание волнового «пакета вероятностей» все-таки затрачивается какое-то время, пусть хоть очень малое? Но тогда получается нечто совсем уж нелепое. Электрон упал? Да, уже упал. Значит, больше никуда упасть он уже не может? Конечно, не может. Но если вероятности исчезают постепенно, а не мгновенно, то какое-то время они еще сохраняются? Разумеется. И, значит, в течение всего этого времени у электрона есть вероятность упасть и в другие места, до которых сигнал о его уже совершившемся падении еще не дошел? Да, так, И чем дальше эти другие места от места действительного приземления, тем дольше сохраняется там вероятность, что упавший электрон сможет приземлиться и в каком-нибудь из этих мест… Чертовщина очевидная!
— Как же разрешить такой парадокс? — спросил Эйнштейн у создателей квантовой механики, когда в 1927 году выдающиеся физики Европы собрались в Брюсселе на 5-й очередной Сольвеевский конгресс для обсуждения угловатых и еще не обкатанных идей только что родившейся науки.
Отвечал Нильс Бор.
Ему трудно пришлось бы, если б он хоть на минуту допускал, что пси-волны — это «волны материи». Ему нечего было бы ответить Эйнштейну, если бы он думал, что сам электрон размазывается по пространству, когда расширяется его волновой «пакет вероятностей». Тогда падение электрона на пластинку — куда бы он ни упал! — и вправду должно было бы сводиться к мгновенному стягиванию в точку падения всего размазавшегося материального естества частицы. А такие вещи невозможны, такие физические процессы немыслимы.
Но в том-то и все дело, что стягивание волнового пакета электрона — это процесс нефизический.
Никакая материя при этом никуда не перемещается по пространству. И не происходит никакого «очищения» пространства от материальных волн или «пси-квантов» — таковых не существует, потому что не существует никакой заложенной в пси-волнах энергии, они вовсе не «волны материи». (Как планетные орбиты — вовсе не обручи в пространстве, помните?) В момент падения электрона, когда он внедряется в молекулу эмульсии, начинается новый этап его биографии: все прежние возможности для «его исчезают, и конечно, сразу, но появляются в этот же момент новые возможности в новых условиях. Новая глава его биографии будет называться «Жизнь в молекуле эмульсии». И новый «пакет вероятностей» расскажет о перспективах, которые ждут его в окружении молекулярных электронов, атомных ядер и электромагнитных полей. Это новый, несравненно более сложный и запутанный этап в жизни нашего электрона, чем свободный полет от щели к пластинке.
Противоречия с теорией относительности тут нет нигде. Стягивание волнового пакета, хотя оно и мгновенное, не посягает на скорость света, как на предел физических скоростей в природе.
…Разумеется, свои парадоксы Эйнштейн формулировал не этими словами. И не этими словами распутывал их Бор. И в рассказанном парадоксе были тонкости, которые здесь пропущены. Но нам надо было услышать хоть отголосок тех знаменитых боев. Они длились много лет. Эйнштейн придумывал все новые возражения против вероятностной догадки Макса Борна и соотношения неопределенностей Гейзенберга. Именно это многострадальное соотношение стало в 1927 году теоретической основой вероятностного толкования законов микромира. Тут для объяснения довольно четырех слов: «Где неопределенности — там вероятности!» Эйнштейн не соглашался признать ни то, ни другое.
Когда двадцатидвухлетний Ландау был в 1930 году в Германии, он видел Эйнштейна. «Конечно, я, в свою очередь, попробовал убедить его в принципе неопределенности, но, само собой разумеется, без всякого успеха», — вспоминал недавно Ландау. «Удивительным было, — сказал он, — парадоксальное сочетание в этом человеке величайшей гениальности, необычайной смелости мысли и каких-то остатков консерватизма».
Читать дальше