3
Однако, как бы то ни было, в момент измерения координаты физик побеждает неопределенность в положении электрона. И чем точней допустимое измерение, тем полнее победа. Из двух неопределенностей одну он может, хотя бы мысленно, устранять с неограниченным успехом. Остается посмотреть: нельзя ли при этом с таким же успехом побеждать и другую? Именно — «при этом», в это же время. Иными словами, надо посмотреть, нельзя ли одновременно со сколь угодно точной информацией о положении электрона в атоме получить столь же точную информацию о направлении и быстроте его движения?
Хоть мы уже и твердили на разные лады, что нельзя, надо в этом убедиться на деле.
Когда «острие в 0,1 ангстрема» накалывает атомный электрон, соударение с очень массивным фотоном выбрасывает электрон из атомного пространства. Он удаляется из места встречи куда-то в неизвестность, буквально — в неизвестность, так как вариантов столкновения бесчисленное множество. (Еще больше, чем на старом добром бильярдном столе, потому что фотон и электрон — это не твердые шарики.) В эту неизвестность электрон уводит та скорость, какая становится его достоянием как раз благодаря столкновению с накалывающим фотоном. Значит, надо признать, что в то самое мгновенье, когда координата электрона уточняется, его скорость бесконтрольно меняется скачком.
Понимаете, что происходит, и притом — неизбежно: именно и только по вине уточняющего измерения координаты скорость делается в момент измерения еще менее определенной, чем она была бы, если б в атом не вторгся фотон и не нарушил его нормальной жизни!
И ясно, что, когда физик берет еще более тонкое, еще более разящее «острие» — фотон с длиной волны в 0,0001 ангстрема, электрон в момент накалывания претерпевает в своем движении еще несравненно большую пертурбацию. Скорость его еще разительней меняется скачком.
Такова цена возрастающей точности в измерении положения микрокентавра: это возрастающая неточность в значении его скорости. Когда первая неопределенность убывает, вторая — неотвратимо растет. И с этим ничего нельзя поделать — вот что замечательно!
Так мал и чуток микромир, что даже деликатнейшее измерение равносильно грубому вторжению в нормальное течение его жизни. В этом нет ничего неожиданного: измерение — материальный физический процесс. Измерять можно только «чем-то». Пусть физик коснется внутриатомного мира даже «перстами легкими, как сон», все равно там произойдет от такого прикосновения что-то ощутимо реальное. Эти персты, как бы нежны они ни были, не меньше того, к чему прикасаются: как и сам микромир, физические приборы по необходимости «сконструированы» из атомов, квантов, элементарных частиц. И заметьте, когда физик делал все более точные измерения координаты электрона, он в каждом опыте «выводил из строя» подопытный водородный атом — невольно удалял из него электрон. Он не мог бы проделать всю серию даже мысленных своих экспериментов на одном и том же атоме водорода. Каждый раз схему приходилось бы брать новый экземпляр, еще не тронутый вторжением. Биологи знают, что под электронным микроскопом они никогда не видят живой клетки. Поток освещающих клетку электронных волн ее убивает. Это не хирургия живых клеток, а препарирование клеточных трупов. Оно дает биологам массу важнейших сведений, но только гигантские серии опытов над тысячами клеток позволяют им статистически воссоздать картину жизни в клеточной структуре. Вот так и в микрофизике — измерение искажает объект наблюдения. Вы понимаете, как существенно было отдавать себе в этом полный отчет?
Мы могли бы попросить физика провести серию измерений координаты электрона в обратном порядке: брать все менее острые острия — все более длинноволновые фотоны. Они не так заметно нарушали бы нормальный ход движения атомного электрона. И чем «незаметней», чем «слабее» был бы фотон, тем мягче и бесформенней точка, которую ставил бы он на карте атома. Скорость электрона не так страдала бы от этих прикосновений. Но разве не видно, что уменьшение неопределенности ее измерения покупалось бы от опыта к опыту ценой увеличения неопределенности в знании координат электрона? Измерение с помощью все более расплывчатых «точек» давало бы все менее точную информацию о положении электрона в атоме.
Можно было, бы, наконец, придумать идеальный опыт для измерения именно скорости микрочастицы (или ее импульса — «масса, умноженная на скорость»). Но для этого понадобился бы новый многостраничный и без нужды утомительный рассказ, а итог был бы тем же самым: физики лишь на новый лад еще раз убедили бы нас, что обе неопределенности победить одновременно невозможно никакими уловками совершеннейших измерений.
Читать дальше