Существует математическое доказательство того, что в любой теории, совместимой с квантовой механикой и теорией относительности, должна всегда соблюдаться комбинированная симметрия CPT . Другими словами, вселенная должна вести себя в точности так же, если все частицы заменить на античастицы, зеркально отразить ее и обратить направление времени. Но Кронин и Фитч показали, что если заменить во вселенной все частицы на античастицы и зеркально отразить, не обратив при этом направление времени, то поведение полученной вселенной будет отличаться от поведения исходной. Таким образом, при обращении направления времени должны измениться законы физики: они не подчиняются требованию сохранения T -симметрии.
Само собой разумеется, в ранней Вселенной T- симметрия не сохраняется: с течением времени Вселенная расширяется, а если бы время повернуло вспять, то Вселенная сжималась бы. Поскольку существуют силы, не подчиняющиеся требованию сохранения T -симметрии, то, следовательно, в ходе расширения Вселенной число антиэлектронов, превращающихся в кварки под влиянием этих сил, может превысить число электронов, преобразующихся в антикварки. Тогда по мере дальнейшего расширения и охлаждения Вселенной антикварки могли аннигилировать с кварками, но поскольку кварки преобладали, небольшой их избыток должен был сохраниться. Именно из них состоит вещество, которое мы наблюдаем в настоящее время и из которого состоим сами. Таким образом, само наше существование может рассматриваться как подтверждение – пусть только качественное – теорий великого объединения. Впрочем, оценки столь приблизительны, что невозможно предсказать количество оставшихся после аннигиляции кварков; неясно даже, остались ли в большинстве кварки или антикварки. (Правда, если бы во Вселенной преобладали антикварки, мы бы попросту называли их кварками, а кварки – антикварками.)
Теории великого объединения не принимают во внимание гравитационное взаимодействие. Это не так важно, поскольку, когда мы имеем дело с элементарными частицами и атомами, его влиянием, как правило, можно пренебречь – настолько оно слабое. Впрочем, тот факт, что тяготение – дальнодействующая сила и к тому же всегда притягивающая, означает, что ее влияние суммируется. Потому при достаточно большом количестве частиц вещества гравитационные эффекты могут оказаться сильнее проявлений всех остальных сил. По этой причине именно гравитация определяет эволюцию Вселенной. В случае объектов размером со звезду гравитационная сила притяжения может даже превзойти все другие силы и привести звезду к коллапсу. В 1970-х годах я занимался исследованием черных дыр, которые теоретически возникают в результате коллапса звезд и мощных гравитационных полей в их окрестностях. Именно эти изыскания заставили меня рассуждать о возможном характере взаимного влияния квантовой механики и общей теории относительности. Но это лишь первое приближение к квантовой теории гравитации, которую еще предстоит открыть.
Глава шестая. Черные дыры
Термин «черная дыра» появился сравнительно недавно. Его придумал в 1969 году американский ученый Джон Уилер, чтобы наглядно проиллюстрировать идею почти двухсотлетней давности. Тогда существовали две теории света: согласно одной из них – и ее придерживался Ньютон – свет состоит из частиц, а согласно другой – из волн. Теперь-то мы знаем, что обе теории [в определенном приближении] верны. В силу принципа корпускулярно-волнового дуализма в квантовой механике свет можно рассматривать как поток частиц и как поток волн. В рамках теории, понимающей свет как череду волн, сложно было объяснить, как он должен откликаться на гравитацию. Но если считать, что свет состоит из частиц, есть все основания полагать, что сила тяготения воздействует на эти частицы точно так же, как, например, на пушечные ядра, ракеты и планеты. Сначала люди считали, что частицы света движутся с бесконечной скоростью, и в этом случае сила тяготения не способна затормозить их. Но однажды Оле Рёмеру удалось измерить скорость света и установить, что она конечна, а это означало, что влияние силы тяжести на свет может быть существенным [16].
Профессор Кембриджского университета Джон Мичелл, исходивший именно из этого предположения, в 1783 году опубликовал в журнале «Философские труды Королевского общества Лондона » статью. В ней он обратил внимание на то, что достаточно массивная компактная звезда должна создавать настолько сильное гравитационное поле, что свет не сможет покинуть ее. Испущенное с поверхности такой звезды излучение не сможет далеко уйти: рано или поздно оно будет остановлено и возвращено назад силой тяжести звезды. Мичелл полагал, что таких звезд может быть много. Хотя мы и не можем увидеть их, потому что свет этих звезд не достигнет нас, мы все же вполне в состоянии обнаружить их гравитационное притяжение. Такие объекты мы сейчас называем черными дырами – ведь это действительно зияющие в пространстве черные пустоты. Через несколько лет похожую гипотезу высказал французский ученый Пьер Симон де Лаплас, по-видимому, совершенно независимо от Мичелла. Интересно, что Лаплас включил эту гипотезу только в первое и второе издания своей книги «Изложение системы мира», не упомянув о ней в более поздних изданиях. Возможно, он счел эту идею бредовой. (К тому же в XIX веке корпускулярная теория света теряла популярность, поскольку в то время казалось, что все можно объяснить в рамках волновой теории, которая не давала ясного ответа на вопрос о том, возможно ли вообще влияние тяготения на свет.)
Читать дальше
Конец ознакомительного отрывка
Купить книгу