Звезды могут иметь различные параметры: температуру, размер, время жизни, внутреннюю структуру. Ключевым параметром для этих объектов является масса, которая варьирует примерно от нескольких сотых долей до сотен масс Солнца. Однако все звезды объединяет то, что в их недрах идут термоядерные реакции: легкие элементы превращаются в более тяжелые. С момента своего появления именно звезды (и их остатки) определяют химическую эволюцию Вселенной – изменение содержания различных элементов.
Водород и гелий – самые распространенные элементы во Вселенной. Остальные элементы в основном формируются в результате эволюции звезд и их остатков.
Больше всего времени любая звезда проводит на стадии Главной последовательности, где идут реакции превращения водорода в гелий (одним из первых такую идею рассмотрел Артур Эддингтон). Таким образом, благодаря существованию звезд во Вселенной массовая доля водорода непрерывно уменьшается. Однако на гелии реакции останавливаются лишь в самых легких звездах, а в других они идут дальше – вплоть до элементов «железного пика».
Термоядерные реакции в ядрах звезд идут до элементов «железного пика».
Термоядерные реакции в звездных недрах идут при высокой температуре и плотности, поскольку положительно заряженным ядрам для слияния нужно преодолеть кулоновский барьер, связанный с электростатическим отталкиванием. Это происходит благодаря квантовому туннелированию. Такой процесс впервые был рассмотрен Георгием Гамовым, а затем важный вклад в разработку этого эффекта в применении к звездам внесли Роберт Аткинсон (Robert d'Escourt Atkinson) и Фриц Хоутерманс (Fritz Houtermans). Наконец, в конце 1930-х гг. Ганс Бете и Карл фон Вайцзеккер построили модель горения водорода в звездах.
На первом этапе водород превращается в гелий. Для дальнейших реакций нужны более высокие плотности и температуры, поэтому они идут только в более массивных звездах. Эти стадии впервые были подробно рассмотрены Фредом Хойлом. Затем в деталях модель нуклеосинтеза была разработана в 1950-е гг. в работах Алистера Кэмерона (Alastair Cameron) и группы ученых с участием Фреда Хойла (знаменитая статья B2HF – Бербидж, Бербидж, Хойл, Фаулер). Термоядерные реакции в ядрах звезд идут с выделением энергии вплоть до элементов группы железа (так называемого «железного пика»), а синтез более тяжелых элементов идет с поглощением энергии, поэтому они в ядрах звезд не образуются.
С точки зрения химической эволюции Вселенной важно не только создать элементы, но и выбросить их в межзвездную среду. Значительная часть элементов, синтезированная в процессе жизненного цикла звезды, накапливается в ее ядре. Во внешнюю среду они могут попасть только в результате катастрофических процессов. Такими процессами в первую очередь являются взрывы сверхновых. Это могут быть сверхновые, связанные с коллапсом ядра массивной звезды, или же сверхновые типа Ia (термоядерный взрыв белого карлика). Во время взрыва происходит не только выброс элементов в окружающую среду, но и синтез новых элементов. Кроме того, новые элементы возникают и после взрыва за счет распада образующихся радиоактивных изотопов.
Наряду с одиночными звездами (или широкими двойными) тесные звездные пары могут внести свой особый вклад благодаря экзотическим процессам, протекающим в таких системах. Известен феномен новых звезд. В них вещество накапливается в результате аккреции на белом карлике в тесной двойной системе, а затем в накопленном веществе происходит термоядерный взрыв. Наблюдения показали, что сброшенное вещество обогащено ядрами углерода, азота и кислорода (CNO). По всей видимости, это не ядра, синтезированные в результате вспышки, а вещество из внешних слоев белого карлика. Таким образом, вспышки новых помогают сбрасывать часть вещества, накопленного в ядре звезды в течение ее эволюции.
Большое количество элементов синтезируется и выбрасывается во внешнюю среду в результате вспышек сверхновых.
Аналогом вспышек новых звезд являются вспышки рентгеновских барстеров, только аккреция и накопление вещества в данном случае происходит не на белый карлик, а на нейтронную звезду. В результате таких вспышек должно происходить образование элементов с массами до 110 атомных единиц за счет быстрого захвата протонов. Если это вещество эффективно сбрасывается в окружающую среду, то такой сценарий вносит большой вклад в содержание богатых протонами относительно легких ядер (не тяжелее теллурия).
Читать дальше
Конец ознакомительного отрывка
Купить книгу