Период пульсаций цефеид связан с их светимостью, что позволяет использовать эти объекты для определения расстояний.
Такой цикл работает только в случае залегания запирающего слоя на нужной глубине. Соблюдение этого условия в первую очередь определяется температурой звезды. Поэтому на диаграмме Герцшпрунга – Рассела возникает достаточно узкая, почти вертикальная полоса нестабильности, где и расположены практически все типы регулярно пульсирующих с достаточно большой амплитудой звезд. Сейчас строятся более детальные модели пульсаций, которые могут объяснять очень сложное поведение некоторых объектов, демонстрирующих вариации периодов, различные типы пульсаций, их сочетания и эволюцию.
Важной особенностью цефеид является то, что период их пульсаций (он составляет от 1 до 100 дней) связан со светимостью. Это установила в 1912 г. Генриетта Левитт (Henrietta Leavitt), изучая цефеиды Малого Магелланова Облака. Поскольку цефеиды – гиганты, т.e. обладают высокой светимостью (обычно она в несколько тысяч раз превосходит солнечную), уже сто лет назад их можно было наблюдать в соседних галактиках. Именно это позволило в 1920-е гг. Эдвину Хабблу (Edwin Hubble) и другим исследователям определить природу спиральных туманностей и продемонстрировать, что это гигантские звездные системы, подобные нашей и находящиеся на расстояниях в миллионы световых лет. В настоящее время цефеиды используют как одну из основ определения расстояний до других галактик.
В последние годы благодаря работе космического телескопа Hipparcos, а позднее космического телескопа Hubble, удалось с высокой точностью измерить параллаксы для нескольких десятков цефеид. Это позволило уточнить внегалактическую шкалу расстояний благодаря лучшей калибровке определения расстояний по цефеидам.
4.4. Двойные и кратные звезды. Аккреция
Исключая самые легкие, около половины звезд входит в физически (гравитационно) связанные кратные системы, в некоторых случаях они наблюдаются даже невооруженным глазом или в небольшой любительский телескоп. Однако две звезды, видимые рядом на небе, необязательно образуют пару: это может быть случайной проекцией. Для установления физической связи лучше всего обнаружить вращение вокруг общего центра масс (непосредственно по смещению звезд или по их скоростям, определяемым по спектру). Иногда (в первую очередь в очень широких парах с большими орбитальными периодами) это невозможно сделать (например, вплоть до 2016 г. продолжались споры о том, образует ли Проксима Центавра гравитационно-связанную тройную систему с двумя звездами альфы Центавра). Тогда факт связи можно установить или по одинаковому расстоянию, или по одинаковому собственному движению звезд (смещению на небе из-за их движения относительно Солнца).
Существуют не только двойные, но и тройные, а также системы из четырех, пяти и даже шести звезд, гравитационно связанные друг с другом. Более 10 % звезд (опять же, исключая самые легкие) входит в состав тройных или систем более высокой кратности. Однако в таких системах всегда реализуется иерархический принцип. Например, тройная система устойчива только в том случае, если две из трех звезд образуют тесную пару с расстоянием между ними существенно меньшим, чем расстояние до третьей звезды (например, как Проксима Центавра в системе альфы Центавра). Иными словами, звезда в каждый момент времени может иметь только одного близкого соседа, если система устойчива.
Около половины звезд типа Солнца входит в двойные системы.
Расстояние между компонентами может сильно варьироваться от системы к системе. С одной стороны, оно ограничено воздействием звезд друг на друга, а потому не может составлять менее нескольких звездных радиусов (если только звезды не находятся на быстрой стадии слияния). Соответственно, среди нормальных звезд самые тесные пары могут образовывать красные карлики, а вообще среди тел звездных масс – компактные объекты. Например, известна пара белых карликов HM Рака, делающая один оборот всего лишь за пять минут; тела в этой системе имеют орбитальные скорости более миллиона километров в час! С другой стороны, двойные системы не могут быть очень широкими (т.e. с большой орбитой), поскольку их могут разрушить пролетающие мимо звезды или их суммарное воздействие (многие звезды рождаются в плотных группах и скоплениях, так что разрушение широких пар может происходить очень рано). Поэтому систем шире нескольких десятков тысяч астрономических единиц практически не бывает, и число примеров систем большего размера очень незначительно. Обычно же расстояние между компонентами двойных составляет от нескольких до нескольких сотен астрономических единиц (в среднем оно меньше для более легких пар).
Читать дальше
Конец ознакомительного отрывка
Купить книгу