После рассеяния газового диска планеты и планетезимали продолжают взаимодействовать друг с другом. На этой стадии, кроме существенного изменения орбит легких тел за счет взаимодействия с наиболее массивными, также может происходить и миграция крупных планет (как это имело место, например, в Солнечной системе). Таким образом, параметры орбит могут меняться еще на протяжении сотен миллионов лет, пока остаются доступные для взаимодействия легкие тела (астероиды, кометные ядра, легкие планетезимали и т. д.). Но в целом период формирования завершается вскоре после исчезновения диска.
Общая схема образования планетных систем такова: сжатие газопылевого облака, формирование звезды и диска вокруг нее, рост и взаимодействие планетезималей, формирование планет в диске и их миграция.
Какое-то время в системе еще наблюдается так называемый остаточный диск. Он пополняется пылью в результате столкновений остающихся небольших тел, в основном на больших расстояниях от звезды (что в Солнечной системе примерно соответствует будущему поясу Койпера до эпохи поздней тяжелой бомбардировки). Со временем интенсивность столкновений падает, и остаточный диск также рассеивается.
В дальнейшем орбиты планет могут претерпевать изменения за счет взаимодействия друг с другом или с другими звездами, если система кратная. Важным является эффект Лидова – Козаи, приводящий к колебательному изменению эксцентриситетов и наклонений орбит под влиянием внешних массивных тел в той же системе.
Эффекты Лидова – Козаи и Ярковского играют важную роль в эволюции орбит на протяжении существования планетной системы.
На небольшие тела влияние оказывает излучение звезды посредством эффекта Ярковского. Он был предсказан в 1900 г. инженером Иваном Ярковским. Эффект состоит в неизотропном испускании излучения неравномерно нагретым вращающимся телом. Он является существенным для астероидов и, накапливаясь, за время существования системы может существенно менять их орбиты, как повышая, так и понижая их. Астероид как бы приобретает слабый «фотонный двигатель», который может разгонять или тормозить его в зависимости от направления собственного вращения относительно орбитального движения.
Планеты, расположенные очень близко от звезды, могут взаимодействовать с ней за счет приливных сил. Если орбитальный период планеты короче периода вращения звезды, приливные силы тормозят движение планеты по орбите, при этом планета переходит на более низкую орбиту и может со временем упасть на звезду. В случае газовых планет могут также происходить испарение внешних оболочек и аккреция вещества планеты на звезду.
Орбиты планет изменяются на финальных стадиях эволюции звезды.
Наконец, планеты могут снова начать менять свои орбиты на финальных стадиях существования звезды, когда она начинает претерпевать существенные эволюционные изменения, превращаясь в гигант и сбрасывая внешние слои. Это приводит к уменьшению звездной массы. Гравитационное поле звезды ослабевает, в результате планеты и другие тела переходят на более высокие орбиты, а при значительной потере массы звездой система может полностью разрушиться.
Разрушение планетной системы неизбежно приводит к появлению планет-бродяг (rogue planets). Кроме того, вероятно, что массивные планеты могут формироваться «по звездному механизму». Сейчас известно несколько массивных одиночных планет (в основном они обнаружены при поисках коричневых карликов). Кроме того, известны планеты в паре с коричневыми карликами (например, система OGLE-2016-BLG-1195Lb, обнаруженная с помощью микролинзирования). Наконец, известна интереснейшая система 2MASS J1119−1137, состоящая из двух массивных планет с массами 3–5 масс Юпитера. Эту пару удалось изучить по прямым изображениям, полученным с помощью телескопа обсерватории Кека (W. M. Keck Observatory) (см. раздел 13.3 «Современные оптические телескопы и проекты ближайшего будущего»).
Глава 4
Звезды и их эволюция
Здесь речь пойдет о так называемых нормальных звездах – объектах, в недрах которых идет термоядерный синтез. В результате этих реакций легкие элементы, начиная с обычного водорода, превращаются в тяжелые. Для запуска синтеза нужны достаточно высокие температура и плотность. Обе величины регулируются массой звезды, что задает нижний предел на ее массу, который зависит от химического состава и обычно составляет примерно 0,08 массы Солнца. Более легкие объекты относят к бурым (коричневым) карликам. Самые массивные звезды, рождающиеся сейчас в нашей Галактике, имеют массы менее 200 солнечных.
Читать дальше
Конец ознакомительного отрывка
Купить книгу