Космические гамма-всплески связаны со слияниями нейтронных звезд и со вспышками особого типа сверхновых.
Гамма-всплески делят на два типа. Короткие (обычно короче нескольких секунд) связывают со слияниями нейтронных звезд, а длинные (до нескольких часов) – со взрывами массивных звезд с быстро вращающимися ядрами. В год наблюдается несколько сотен гамма-всплесков, это одни из самых мощных взрывных процессов, происходящих в настоящее время во Вселенной.
Поиск аннигиляции частиц темного вещества – перспективная задача гамма-астрономии.
Хотя обычно основная энергия всплеска приходится на диапазон энергий до 1 МэВ, для некоторых всплесков были получены данные и на гораздо больших энергиях – вплоть до нескольких гигаэлектронвольт. Детали механизма излучения гамма-всплесков остаются неясными, поэтому здесь необходимы новые наблюдения, в том числе и на очень высоких энергиях.
Количество известных гамма-источников (не считая космических гамма-всплесков и солнечных вспышек) составляет сейчас несколько тысяч. Однако в основном они обнаружены спутником Fermi на энергиях ниже 300 ГэВ. С ростом энергии число известных источников уменьшается, среди них много неидентифицированных объектов. Большинство идентифицированных гамма-источников относится или к пульсарам, или к активным ядрам галактик, и дальнейшие наблюдения помогают лучше понять эти типы источников и механизмы генерации излучения в них. Возможно, самой перспективной задачей гамма-астрономии является обнаружение аннигиляционного сигнала от темного вещества. Во многих моделях предсказывается, что частицы, составляющие темную материю, могут аннигилировать друг с другом, порождая гамма-кванты. Обнаружение аннигиляционного гамма-сигнала было бы прямым доказательством существования этой составляющей нашей Вселенной.
Нейтрино – это легкие незаряженные частицы, относящиеся к лептонам. Известно три типа нейтрино: электронные, мюонные и тау, все типы нейтрино имеют античастицы. Эти частицы относятся к самым фундаментальным – они входят в Стандартную модель элементарных частиц. С другой стороны, обнаружение массы у нейтрино и открытие нейтринных осцилляций (в некотором смысле превращение одного типа нейтрино в другой) является важнейшим доказательством неполноты Стандартной модели.
Нейтрино – фундаментальные элементарные частицы, участвующие в слабом взаимодействии.
Нейтрино очень плохо взаимодействуют с веществом, потому что не имеют электрического заряда, а также не участвуют в сильном ядерном взаимодействии. С одной стороны, это делает частицу трудноуловимой, с другой – позволяет ей беспрепятственно покидать области с высокой плотностью вещества или находящиеся внутри массивных объектов. Нейтрино в большом количестве возникают в термоядерных реакциях в недрах звезд (в том числе Солнца) и при вспышках сверхновых. Именно для регистрации таких нейтрино и создавались первые детекторы. Обе задачи – регистрация солнечных нейтрино и нейтрино от сверхновых – были успешно решены.
Нейтрино рождаются в термоядерных реакциях в недрах звезд и при вспышках сверхновых.
Впервые нейтрино были зарегистрированы в 1956 г. (впоследствии это было отмечено Нобелевской премией) в экспериментах на ядерном реакторе. Однако было ясно, что протекание термоядерных реакций в недрах Солнца делает его довольно мощным источником нейтрино. Рэй Дэвис, Джон Бакал (John Bahcall) и их коллеги, используя в качестве основы идею Бруно Понтекорво, создали первый детектор астрофизических нейтрино в 1968 г. За эту работу Рэй Дэвис как руководитель эксперимента в 2002 г. получил Нобелевскую премию по физике.
Идея детектора основана на реакции, в которой хлор-37 (37Cl) захватывает электронное нейтрино. В результате бета-распада один из нейтронов в его ядре превращается в протон с испусканием электрона, и хлор-37 превращается в аргон-37 (37Ar) – радиоактивный изотоп с периодом полураспада 35 дней. Для эксперимента берется большой объем хлорсодержащего вещества (в эксперименте Дэвиса это был перхлорэтилен), а спустя некоторое время из него извлекается аргон-37, количество которого соответствует прошедшим в объеме детектора взаимодействиям нейтрино с хлором. Чтобы избежать нежелательных фоновых событий, приводящих к появлению изотопа аргона-37, необходимо изолировать детектор от влияния космических лучей, для чего его устанавливают в глубокой шахте.
Читать дальше
Конец ознакомительного отрывка
Купить книгу