SKA станет крупнейшим радиоастрономическим инструментом в истории.
В настоящее время начинается реализация проекта SKA (Square Kilometer Array, Антенная решетка площадью в квадратный километр). Это самая большая и амбициозная радиоастрономическая установка, когда-либо создававшаяся человечеством. Часть антенн будет установлена в Южной Африке, а часть – в Австралии. Суммарная собирающая площадь составит один квадратный километр, что обеспечит невиданную ранее чувствительность к слабым источникам. Поскольку элементы установки размещены на огромной территории, будет достигнуто очень высокое угловое разрешение. Наконец, установка обладает довольно большим по радиоастрономическим меркам полем зрения. Планируется, что наблюдения на первой очереди установки начнутся в начале 2020-х гг., а вторая (окончательная) очередь заработает в конце 2020-х гг. Полная стоимость этого проекта превышает $2 млрд.
Радиоастрономия – одно из немногих направлений исследований, где возможны не только пассивные (наблюдения), но и активные методы, такие как радиолокация. В 1960-е гг. активно начала развиваться радиолокация планет Солнечной системы, что позволило получить уникальные данные о рельефе Венеры, а также о строении подповерхностных слоев на Марсе и Меркурии. Особое место занимают радиолокационные исследования астероидов, позволяющие в ряде случаев определить форму этих тел.
13.5. Рентгеновские телескопы
Атмосфера Земли не пропускает рентгеновские лучи, поэтому наблюдения в этом диапазоне (на энергиях квантов примерно от 100 эВ до 100 кэВ, что соответствует длинам волн от 0,01 до 10 нм) возможны только из космоса (или самой верхней атмосферы для самых больших энергий). Рентгеновское излучение солнечной короны было впервые зарегистрировано в конце 1940-х гг., причем детектор был установлен на трофейной ракете V-2 («Фау-2»), совершившей суборбитальный полет. Первый источник вне Солнечной системы – двойная система с аккрецирующей нейтронной звездой – тоже был открыт в результате запуска детекторов на ракете. Это произошло в 1962 г. в эксперименте, проводившемся Риккардо Джиаккони с коллегами. За свой вклад в развитие рентгеновской астрономии в 2002 г. Джиаккони получил Нобелевскую премию по физике. Наблюдения в рентгеновском диапазоне проводились также с помощью приборов на высотных аэростатах, однако для них доступным является лишь диапазон энергий выше 35 кэВ, поэтому основные открытия были сделаны с помощью космических аппаратов.
Рентгеновские наблюдения возможны только из космоса.
Рентгеновская астрономия занимает очень важное место в исследовании Вселенной, поскольку фотоны высокой энергии испускаются веществом в экстремальном состоянии. Это может быть тепловое излучение очень горячей плазмы с температурой в миллионы градусов и выше. Такая ситуация реализуется, например, в аккреционных дисках вокруг черных дыр и в скоплениях галактик. Именно рентгеновское излучение позволяет нам в прямом смысле видеть поверхность нейтронных звезд. Также источником рентгеновского излучения являются электроны высоких энергий при движении в магнитном поле, что происходит, например, в магнитосферах пульсаров и магнитаров. Наконец, существуют спектральные линии в рентгеновском диапазоне: например, известная К-линия железа на энергии 6,4 кэВ. Изучение таких линий в дисках вокруг черных дыр позволяет определять темп вращения этих объектов.
Рентгеновский диапазон – это излучение с длиной волны от 0,01 до 10 нм.
Поскольку фотоны рентгеновского излучения имеют большую энергию, детектирование существенно отличается от применяемого в оптической или радиоастрономии. В рентгеновском диапазоне доминируют квантовые свойства излучения, а не волновые. Рентгеновские лучи очень трудно фокусировать, поскольку коэффициент преломления большинства материалов для этого диапазона очень близок к единице, кроме того, рентгеновские лучи очень сильно поглощаются в веществе. Поэтому первые детекторы имели довольно низкую чувствительность и очень плохое угловое разрешение.
Самый простой тип детекторов рентгеновских лучей, применявшихся в астрономии, – это счетчики Гейгера и пропорциональные счетчики, основанные на производимой рентгеновскими фотонами ионизации газа. Для достижения хотя бы минимально разумного углового разрешения перед детектором устанавливались коллиматоры, пропускавшие излучение лишь с небольшого участка неба площадью несколько квадратных градусов. Инструменты на первой рентгеновской орбитальной обсерватории Uhuru («Ухуру») позволяли добиться разрешения около половины градуса. Однако каталог Uhuru включал всего лишь около трех сотен объектов, многие из которых удалось связать с источниками в других диапазонах. Поэтому даже небольшое угловое разрешение позволило начать активное изучение астрономических объектов в рентгеновском диапазоне.
Читать дальше
Конец ознакомительного отрывка
Купить книгу