Возвращаясь к началу нашего разговора, можно сказать, что загадки космоса и микромира пересекаются. Чтобы изучить эти загадки, нам нужно установить связи между тяготением (силой, которая доминирует в больших масштабах) и другими силами, которые управляют отдельными частицами. Это дело все еще не завершено. Но различные силы и частицы внутри атома сейчас представляются нам вполне согласованными.
В начале XIX в. Майкл Фарадей понял, что электричество и магнетизм непосредственно связаны: движущийся магнит создает электрические токи, а движущийся электрический заряд, наоборот, создает магнитное поле. Эти принципы легли в основу электромоторов и динамо-машин. В 1864 г. Джеймс Кларк Максвелл описал открытия Фарадея в знаменитых уравнениях, которые выражают, как изменяющееся электрическое поле создает магнитное и наоборот. В открытом пространстве эти уравнения имеют решения, при которых электрические и магнитные поля колеблются. Именно сочетанием таких полей и является свет – это волна электрической и магнитной энергии (как и радиоволны, рентгеновские лучи и все остальное, что мы сейчас называем электромагнитным спектром).
Таким образом, мы видим две основные силы: электромагнетизм (понимаемый как единая сила) и тяготение. Даже Фарадей стремился отыскать общность между тяготением и электромагнетизмом, хотя и понимал, что это преждевременно. Сто лет спустя Эйнштейн провел свои последние годы в поисках глубокой связи между этими двумя силами. Эти искания вновь оказались напрасными. На самом деле теперь мы понимаем, что они были обречены, потому что Эйнштейн не знал о работающих на коротких расстояниях силах, которые действуют внутри атомного ядра: сильное или ядерное взаимодействие, которое связывает вместе протоны и нейтроны в атомном ядре (и определяет наше число ε); и слабое взаимодействие, важное для радиоактивного распада и нейтрино. По несколько грубому мнению физика Абрахама Пайса, самого прославленного биографа великого ученого, Эйнштейн «мог с таким же успехом заниматься рыбалкой» в последние 30 лет своей жизни.
Теперь трудность задачи состоит в том, чтобы объединить четыре силы: три, которые управляют микромиром, – электромагнетизм, сильное взаимодействие и слабое взаимодействие – и силу тяготения. Первый современный шаг к их унификации связан с именами Шелдона Глэшоу и Стивена Вайнберга в США, Герарда ‘т Хоофта в Голландии и пакистанского физика Абдуса Салама. Результаты их работы показали, что электрическая и магнитная силы (объединенные Максвеллом) сами по себе связаны, по-видимому, с совершенно иной силой – так называемым слабым взаимодействием, важным для нейтрино и радиоактивности. В очень ранней Вселенной эти силы были объединены в одну и начали различаться только после того, как Вселенная остыла ниже критической температуры примерно 10 15градусов (что произошло, когда ее возраст составлял 10 –12секунд). Самые большие ускорители могут имитировать такие температуры, и Салам и Вайнберг получили доказательства своей правоты, когда во время экспериментов в CERN открыли новые частицы, существование которых они предсказывали.
В 1950-х и 1960-х гг. было открыто так много новых частиц (добавившихся к хорошо знакомым электронам, нейтронам и протонам), что казалось: ученые, занимающиеся физикой частиц, рискуют превратиться в «коллекционеров марок». Но в череде этих частиц обнаружилась система; субатомные частицы можно было объединять в «семьи», подобно тому как атомы в периодической таблице Менделеева подразделяются на периоды и группы. В 1964 г. Мюррей Гелл-Ман и Джордж Цвейг, два американских физика-теоретика, предложили «кварковую модель». Кварки имеют заряд, составляющий 1/3 или 2/3 от заряда электрона. Экспериментальную поддержку теории обеспечили Джером Фридман, Генри Кендалл и Ричард Тейлор, которые использовали новейший линейный ускоритель в Стэнфорде, чтобы бомбардировать протоны электронами. Ученые обнаружили, что электроны рассеиваются так, будто каждый протон состоит из трех «точечных зарядов», содержащих соответственно 2/3, 2/3 и – 1/3 общего заряда. Тем не менее один из неожиданных аспектов «кварковой модели» состоит в том, что отдельный кварк вычленить никак нельзя, хотя внутри протона кварки ведут себя как свободные частицы. (Все попытки обнаружить частично заряженные частицы провалились.) В конце 1970-х гг. бо́льшая часть «зоопарка частиц» была объяснена в категориях 9 типов кварков.
Читать дальше