Намного более подробные карты реликтового излучения впоследствии составили спутник НАСА WMAP (Wilkinson Microwave Anisotropy Probe – «Зонд для изучения анизотропии реликтового излучения им. Уилкинсона») [64] Космический аппарат WMAP (Wilkinson Microwave Anisotropy Probe): http://science.nasa.gov/missions/wmap . Космический аппарат «Планк»: http://sci.esa.int/planck . Нобелевская премия по физике за 2006 г.: https://www.nobelprize.org/nobel_prizes/physics/laureates/2006 .
, запущенный в июне 2001 г., и миссия ЕКА Planck, названная в честь прославленного немецкого физика Макса Планка. Спутник Planck стартовал в мае 2009 г. и поставлял данные до октября 2013 г. Обе миссии принесли очень много информации о ранней Вселенной. В определенном смысле они превратили космологию в точную науку.
Реликтовое излучение можно наблюдать и на Земле – не на уровне моря, конечно, в силу абсорбирующего эффекта земной атмосферы, но из любой достаточно высокой и сухой точки. Установите микроволновой телескоп так, чтобы бóльшая часть атмосферного водяного пара осталась внизу, и приступайте.
Южный полюс – одно из таких уникальных мест. Полярная станция «Амундсен – Скотт» находится на высоте 2835 м над уровнем моря. Более того, холодное небо Антарктиды отличается крайней сухостью (Антарктида классифицируется как пустыня), и водяного пара там мало. В 1999 г. ученые Чикагского университета решили построить здесь DASI (Degree Angular Scale Interferometer – «Интерферометр с градусным угловым разрешением») – впечатляющий инструмент с 13 независимыми детекторами на общей платформе. BICEP1 – маленький предшественник BICEP2 – начал работать в 2006 г. Сооружение 10-метрового «Южного полярного телескопа» было завершено в начале 2007 г.
Другим превосходным местом для наблюдений является Ллано де Чайнантор на севере Чили. На этом высокогорном, более 5000 м над уровнем моря, плато, окруженном вулканами, разместилось 66 тарелок ALMA (Атакамской большой антенной решетки миллиметрового/субмиллиметрового диапазона) [65] Я посещал Ллано де Чайнантор и Большую атакамскую миллиметровую/субмиллиметровую решетку (ALMA) ( http://www.almaobservatory.org ) на севере Чили в 1998 г. (при содействии Национальной радиоастрономической обсерватории, NRAO), в 1999 г. (на средства Европейской южной обсерватории, ESO), в 2004 г., в 2007 г. (при финансировании ESO и Нидерландской исследовательской школы астрономии, NOVA), в 2010 г., в 2012 г. (на средства ESO), в 2013 г. (на средства ESO), а также в 2015 и 2017 гг. (оба раза в качестве гида-экскурсовода голландского еженедельника New Scientist ).
. От путешествия сюда в буквальном смысле захватывает дух. В ноябре 2004 г., когда я в третий раз побывал в Чайнанторе, работы на ALMA еще не начались – даже дорога к месту размещения обсерватории только строилась, но аналогичный DASI инструмент для наблюдения космического фонового излучения уже действовал. Три года спустя строительство 6,5-метрового телескопа Atacama Cosmology было почти завешено. Как BICEP2, инструмент окружен огромным конусом для защиты от паразитарных излучений, но если вы подниметесь на соседнюю вершину Сьерро-Токо высотой 5600 м, как сделал я в 2013 г., то перед вами откроется великолепный вид на телескоп [66] Атакамский космологический телескоп (АСТ): http://act.princeton.edu .
.
_________
Многие космические и наземные инструменты следят за реликтовым излучением – послесвечением творения или, как его иногда называют, фото Вселенной в младенчестве, – но все последние эксперименты сосредоточены на его поляризации. Это один из святых Граалей космологии – регистрация неуловимых В-мод поляризации реликтового излучения, вызванной первичными гравитационными волнами периода инфляционного состояния очень молодой Вселенной. В этой фразе много профессиональных терминов, но я разъясню их один за другим.
Начнем с поляризации. Свет – это электромагнитно-волновой феномен, как установил Джеймс Кларк Максвелл в конце XIX в. В норме возмущенные электрические и магнитные поля колеблются с одинаковой силой во всех направлениях – горизонтальном, вертикальном, диагональном и всех промежуточных. Но отраженная световая волна становится поляризованной – колебания сильнее выражены в одном направлении, чем во всех остальных.
В поляризованных светозащитных очках остроумно используется этот эффект. Когда солнечный свет отражается от плоской поверхности, например стены, снега или дороги, то приобретает некоторую степень горизонтальной поляризации: колебания отраженных волн становятся заметно сильнее в горизонтальном направлении, чем в вертикальном. Поляризованные солнечные очки блокируют преимущественно колебания по горизонтали, и отраженные волны становятся намного менее яркими. Эффект хорошо заметен, если повернуть очки на 90°, глядя сквозь них одним глазом.
Читать дальше