Сначала белые карлики чрезвычайно горячи. Температура на их поверхности может достигать 100 000 °С. Но из-за небольшой площади поверхности они не излучают много света. Даже самый близкий – до него менее 10 св. лет – известный нам белый карлик невозможно увидеть невооруженным глазом. Белый карлик медленно остывает, излучая остаточное тепло в ледяной космический вакуум.
Остается темный неактивный ком вырожденной материи – звездный шлак.
Покойся с миром, Солнце!
_________
Причем здесь нейтронная звезда? Возможно, следовало сразу сказать, что Солнце недостаточно массивно, чтобы превратиться в нейтронную звезду. Как ни удивительны белые карлики, нейтронные звезды – еще более поразительные объекты. Чтобы сотворить их, нужно начать со звезды как минимум в 9 раз массивнее Солнца.
Как уже отмечалось, массивные звезды живут быстро и умирают молодыми. Их ожидаемая продолжительность жизни измеряется миллионами, а не миллиардами лет, как если бы эволюцию солнцеподобной звезды ускорили, нажав кнопку быстрой перемотки. Водородный синтез, расширение внешних оболочек, поджиг синтеза гелия, образование углеродно-кислородного ядра, потеря наружной водородной мантии – все происходит намного быстрее.
Дальнейшие события развиваются совершенно иначе. Причина проста. В звезде, имеющей массу, значительно превышающую солнечную, внешние слои сильно давят на ядро. Достигаются гораздо более высокие плотность и температура углеродно-кислородного ядра, чем это будет у Солнца: более 3 кг/мм 3и около 500 млн °C. Этого хватает для запуска очередного цикла реакций термоядерного синтеза, только теперь атомный двигатель в ядре звезды работает не на водороде, а на углероде.
Если оставить детали в стороне, примерно через 1000 лет (в зависимости от массы звезды) углерод превращается в неон, магний, натрий и кислород – космическая алхимия! Как только углерод заканчивается, ядро звезды снова начинает сжиматься. Его плотность и температура еще сильнее увеличиваются – настолько, что неон переходит в магний.
С этого момента процесс сильно ускоряется. Всего за несколько лет большая часть неона также расходуется. Ядро звезды теперь состоит из кислорода и магния. Оно сжимается, пока не запускается кислородный синтез, при котором кислород преобразуется в кремний и малые количества серы и фосфора. Этот процесс длится всего около года. Ядро звезды выжигает весь кислород, опять сжимается и разогревается примерно до 3 млрд °C. Затем менее чем за день ядра кремния сливаются, образуя всевозможные более тяжелые элементы, в том числе аргон, кальций, титан, хром и даже большое количество железа и никеля. Это уже не тот спокойный и равномерный процесс термоядерного синтеза, который мы наблюдали в ядре Солнца. (Напомню, что медленное превращение большей части солнечного водорода в гелий занимает миллиарды лет.) Это взрыв термоядерной бомбы астрономических размеров – космического оружия массового уничтожения.
Если бы мы могли разрезать эту звездную «бомбу с часовым механизмом», то увидели бы, что внутри она похожа на луковицу. В самом центре находятся железо и никель – конечно, не в виде твердых металлов, поскольку все вещества звезды имеют газообразное состояние, хотя и с невероятно высокой плотностью и температурой. Вокруг железно-никелевого ядра – скорлупа из кремния и серы. Дальше слой, содержащий кислород, неон и магний. Еще дальше идут слои кислорода, углерода, гелия и водорода, хотя к настоящему времени большая часть водорода успела унестись в космос. Относительно низкотемпературные реакции синтеза до сих пор протекают на границах слоев. Звездная луковица переполнена атомной энергией. Часовой механизм тикает.
Катастрофа начинается в ядре. Когда заканчивается кремний, атомный двигатель звезды лишается горючего. Дело в том, что ядра атомов железа и никеля не способны спонтанно сливаться в ядра еще более тяжелых элементов. Термоядерный синтез предпочитает создавать атомные ядра с возможно более высокой энергией связи (то есть более стабильные), но железо и никель обладают максимальной энергией связи. Проще говоря, природа не видит причины трансформировать их в более тяжелые элементы.
Гравитация тут же использует представившуюся возможность. Миллионы лет она пыталась спрессовать звезду до все более компактного размера, сближая, насколько возможно, частицы, из которых состоит звезда, но этой силе всякий раз противодействовало распирающее давление энергии светила. Наконец, упорство гравитации вознаграждается. Атомный двигатель звезды останавливается, и выработка энергии в ядре прекращается.
Читать дальше