Резиновая скакалка обладает определенной эластичностью. Ее можно немного растянуть в одном месте и немного сжать в другом, так что общая длина не изменится. Она остается одномерной прямой линией, но в ней распространяются продольные волны. Мысленно нанесите на скакалку деления с шагом в один миллиметр. При распространении в скакалке продольной волны вы увидите, что деления сначала отдаляются друг от друга, а затем сближаются. Это правильная визуализация одномерной гравитационной волны: пространство попеременно растягивается и сжимается.
Теперь перейдем к двухмерному пространству, например к листу бумаги или миллиметровки. Принцип тот же. Гравитационную волну в двухмерном пространстве следует изображать не выгибанием листа складками, как это часто делается. Нет, попытаемся представить распространение волн в двухмерной плоскости. При этом квадратики миллиметровки растягиваются в одних местах и сжимаются в других. (Точнее, в один момент времени данный квадрат увеличивается в определенном направлении, в другой момент уменьшается.) Перпендикулярно направлению волны пространство попеременно растягивается и сжимается, как если бы в плоскости распространялись области повышенной и пониженной «плотности пространства».
А волны Эйнштейна в трехмерном пространстве? Незачем напрягать воображение, представляя возмущение гипотетического четвертого измерения. Это всего лишь волнообразное изменение «плотности пространства». Мысленно рисуем трехмерную миллиметровку, состоящую из кубиков, и наблюдаем, как их стороны удлиняются и укорачиваются перпендикулярно направлению волны по мере ее прохождения.
Волны в трехмерном пространстве являются, разумеется, трехмерными. Популярные схемы и фильмы, изображающие их в двух измерениях, создают ложное впечатление, что две вращающиеся по орбите ЧД испускают гравитационные волны только в горизонтальной плоскости. В действительности волны распространяются во всех направлениях. В одном направлении они могут быть сильнее, чем в другом, но избегайте видеть их только в плоскости орбиты.
Итак, вот правильная визуализация волн Эйнштейна. В сущности, картина почти не отличается от волн плотности, распространяющихся по сосуду с желе, если его встряхнуть, где желе представляет безвоздушное пространство.
В зависимости от источника гравитационные волны могут сильно различаться частотами и амплитудами. (Если вы забыли, что такое частота, длина, амплитуда и скорость волны, вернитесь к главе 2.) Представьте две ЧД, взаимно обращающиеся очень близко друг к другу. Допустим, они совершают 100 оборотов в секунду (эта величина близка к реальности). Из теории Эйнштейна следует, что они излучают гравитационные волны с частотой 200 Гц – мимо наблюдателя, находящегося на некотором расстоянии, за каждую секунду проходит 200 «гребней волны». Поскольку гравитационные волны движутся со скоростью света (300 000 км/с), соответствующая длина волны составляет 1500 км.
Что касается амплитуды, то в случае гравитационной волны это мера интенсивности, показывающая, насколько растягивается и сжимается пространственно-временной континуум. В этом отношении важно понять две вещи. Во-первых, амплитуда уменьшается с расстоянием. Вблизи орбиты ЧД возмущение пространственно-временного континуума сильнее, чем вдали от нее. Фактически амплитуда обратно пропорциональна расстоянию. Проще говоря, волны, уйдя в 5 раз дальше, становятся в 5 раз слабее.
(Это может показаться странным. Ведь сила гравитации или яркость источника света уменьшается пропорционально квадрату расстояния. Если разнести две планеты в 5 раз дальше, их взаимное притяжение уменьшится в 25 раз. Увеличьте расстояние до звезды в 10 раз, и она станет в 100 раз бледнее. Однако в этих случаях мы рассматриваем энергию гравитационного поля или световой волны. В отношении волн Эйнштейна речь идет об амплитуде, действительно обратно пропорциональной расстоянию.)
Кроме того, нужно понять, что амплитуда гравитационных волн непостижимо мала. Я сравнил безвоздушное пространство с сосудом с желе. Но лучше было бы сравнить его с бетонным блоком. Если слегка качнуть банку с желе, все оно начнет колыхаться. Даже ударив по бетонному блоку кувалдой, вы едва ли заметите распространяющуюся в массиве бетона волну. Дело в том, что бетон гораздо плотнее желе. Пространственно-временной континуум обладает исключительной жесткостью. Его трудно деформировать, изогнуть, растянуть или сжать. Нужно очень много энергии, чтобы вызвать даже самое слабое возмущение.
Читать дальше