Мы надеемся, что изучение слабых возмущений пространственно-временного континуума поможет раскрыть часть самых необъяснимых загадок нашей Вселенной. Например, астрономы обнаружили косвенные свидетельства существования огромного количества темной материи. Ее невозможно увидеть – предположительно, темная материя даже не состоит из обычных атомов и молекул, – но можно зарегистрировать ее гравитацию. Внешние области галактик вращаются значительно быстрее, чем следует ожидать, исходя из количества содержащейся в них видимой материи. То же самое можно сказать о скоростях галактик в скоплениях. Кроме того, степень гравитационного линзирования скоплений галактик (отклонения света фонового источника силой тяготения скопления) можно объяснить только присутствием большого количества темной материи. Проблема в том, что никто не имеет представления о природе темной материи, и, несмотря на героические усилия физиков-ядерщиков и космологов, пока не удалось найти ни одного непосредственного свидетельства ее существования.
Другая огромная загадка – темная энергия. Исследования расширения Вселенной показали, что пространство растет увеличивающимися темпами около 5 млрд лет. Здравый смысл говорит, что расширение должно замедляться вследствие взаимного притяжения галактик, однако оно ускоряется. Единственное объяснение, которое смогли предложить физики, – наличие в пустом пространстве загадочной «энергии отталкивания». Идея не нова. Она отчасти согласуется с квантовой теорией, и сам Альберт Эйнштейн ввел в свои уравнения подобие темной энергии – «космологическую константу» – еще до того, как Эдвин Хаббл открыл расширение Вселенной. Однако природа темной энергии также никому не известна.
Серьезность проблемы становится очевидной, когда понимаешь, что темная материя и темная энергия в совокупности составляют до 96 % общей плотности вещества и энергии во Вселенной. Иными словами, нам известны лишь жалкие 4 % ее содержимого, остальное – совершенная загадка. Судя по всему, разгадать ее будет нелегко. Детальные исследования реликтового излучения и крупномасштабных структур Вселенной заставляют сделать вывод: мы способны объяснить устройство Вселенной, только если ее эволюцией управляли таинственные силы – темная материя и темная энергия.
Дальнейшие достижения гравитационно-волновой астрономии, возможно, подарят новые поразительные данные, особенно связанные с темной энергией. Амплитуду гравитационных волн, возникающих при столкновении компактных астрономических объектов, точно предсказывает ОТО. Исходя из наблюдаемой формы волны (чирпа) довольно просто вычислить массы двух сливающихся тел. Затем ОТО подскажет амплитуду расходящихся волн Эйнштейна. Сравнивая расчетную величину с намного меньшей амплитудой, измеренной земными детекторами, легко узнать расстояние, на котором произошло слияние.
Если поиск электромагнитных проявлений обнаруживает галактику, где имело место слияние, можно установить красное смещение этой галактики с помощью оптических телескопов. Как вы узнали из главы 9, красное смещение галактики показывает, сколько времени потребовалось ее свету, чтобы дойти до Земли. Тогда мы сумеем объединить измерения красного смещения и независимые оценки расстояний до большого числа галактик разной степени удаленности и узнаем историю расширения Вселенной – любые замедления или ускорения приведут к отклонениям от точного линейного соответствия расстояния и красного смещения. Детальное знание о расширении космического пространства позволит больше узнать о темной энергии.
Первые указания на существование темной энергии были получены в 1998 г. похожим способом. Астрономы изучали взрывы сверхновых определенного типа (так называемого типа Ia), для которого известен реальный выход энергии. Такой объект называют «стандартная свеча». Измерение наблюдаемой светимости сверхновой дает информацию о расстоянии до нее, которую затем можно сравнить с красным смещением ее галактики. Потенциальной проблемой этого метода является то, что на наблюдаемую светимость взрыва далекой звезды могут влиять другие эффекты, например поглощение пылью. В случае гравитационных волн, однако, вы имеете именно то, что наблюдаете. Вселенная абсолютно прозрачна для возмущений пространственно-временного континуума, и из их наблюдаемой амплитуды легко вывести действительное расстояние до источника. Если сверхновые типа Iа – это стандартные свечи, то гравитационные волны можно назвать стандартными сиренами.
Читать дальше